
TabLLM: Few-shot Classification of Tabular

Data with Large Language Models

Hegselmann et al., AISTATS 2023

Presenter: Haeyoung Lee

December 02, 2025

Seoul National University

1



Motivation

• Real-world records are predominantly stored as tabular data across

domains (e.g., healthcare, climate, finance), yet obtaining labels for

supervised classification is difficult.

• Unlike in computer vision and NLP, deep learning has not consistently

outperformed strong gradient-boosted tree ensembles on tabular data,

which typically have weak locality, mixed feature types, and relatively few

columns.

• LLMs pretrained on massive text corpora exhibit strong few-shot

generalization across diverse domains and can achieve competitive

performance with little or no labeled training data by leveraging the

knowledge encoded in their parameters.

• Key question: Can we leverage an LLM for tabular prediction?

• TabLLM prompts an LLM with (i) a natural-language serialization of each

table row and (ii) a short task description; multiple serialization strategies

are explored, and zero-shot and few-shot classification is evaluated.

2



Notation

• Tabular dataset with n rows and d columns (features).

• xi : a d-dimensional feature vector (the i-th row).

• yi ∈ C : class label; C is the set of classes.

• D = {(xi , yi )}ni=1: dataset of row–label pairs.

• F = {f1, . . . , fd}: feature/column names (e.g., “age”, “education”).

• k: number of labeled training examples.

• Dk : a subset of size k sampled from D (with replacement) used for

fine-tuning.

• serialize(F , x): a function that takes the column names F and feature

values x for a row as inputs and creates a textual representation.

• p: task-specific prompt (short description/question appended after

serialization).

• LLM: an large language model with vocabulary V .

• LLM
(
(serialize(F , x), p)

)
: the prompted output of the LLM.

• Verbalizer: manually specified mapping from LLM output tokens (answer

choices) to class labels in C .
3



Overview

• Steps:

1. Serialize a row (F , x) into a natural language string.

2. Append a task-specific prompt.

3. Obtain output probabilities from the LLM for verbalizer tokens (e.g.,

“Yes”/“No”).

4. In few-shot setting, do parameter-efficient fine-tuning (T-Few) on k

labeled examples.

4



From LLM Text to Class Label

• An LLM outputs a probability

distribution over tokens, not class

IDs.

• A verbalizer maps each class in C

to a verbalizer token (e.g.,

≤ 50K 7→ No, > 50K 7→ Yes).

• Inference: compute the

normalized likelihood of each

verbalizer answer and choose the

most probable class.

5



9 Serialization Strategies

• Templates (manual):
▶ List Template: “feature: value, ...”
▶ Text Template: “The feature is value., ...”

• LLM-based generation:
▶ Table-to-Text: an LLM fine-tuned on a table-to-text generation task. Feed each

(column, value) tuple separately and concatenate the generated outputs.
▶ Text T0: use T0 with 11B params, split a row into pairs of two (column, value)

tuples, prompt each pair with ‘‘Write this information as a sentence:’’, then

combine the resulting sentences.
▶ Text GPT-3: use GPT-3 via API; provide the full list of features at once with

‘‘Rewrite all list items in the input as a natural text.’’ 6



9 Serialization Strategies

• Ablations (based on the List Template):

▶ List Only Values: remove column names (values only) to test

whether feature/column names contribute to performance.
▶ List Permuted Names: permute the column names so that each

value is paired with an incorrect name. (e.g., sex:30, age:male)

Goal: test how important the correct name–value association is.
▶ List Permuted Values: permute values within each column using a

fixed, column-specific mapping applied to all examples.

Categorical ex.: Bachelor→PhD, Master→12th, ...

Continuous ex.: bin into 10 uniform ranges, then permute bins

(e.g., age 20-30→70-80).

Goal: test whether the LLM relies on fine-grained value

information beyond column names.
▶ List Short: keep at most 10 features; used for the healthcare dataset

to satisfy the LLM input-length limit and test the effect of reduced

information.

7



Experimental Setup: LLM and Fine-tuning

• LLM: T0 (11B params); a T5-style encoder–decoder model that is

further instruction-tuned on a large variety of task-specific prompts,

which yields strong zero-shot generalization across diverse tasks.

▶ Input budget: 1024 tokens (roughly 400 words).

• Few-shot fine-tuning: Fine-tune on the k-shot set using the

parameter-efficient T-Few recipe.

▶ Public tabular datasets: 30 epochs for all few-shot runs.
▶ Healthcare dataset: fewer epochs for larger k (e.g., 10 epochs up to

256 shots; 3 epochs for 1,024+ shots) to reduce runtime and

overfitting.

• Zero-shot baseline: GPT-3 with no fine-tuning.

8



Experimental Setup: Datasets

• 9 Public tabular benchmarks :

▶ Requirements: ≤ 50,000 rows, ≤ 30 columns for cost and token

budget of T0.
▶ Require textual feature names; exclude datasets with derived features

(e.g., mean pixel values).
▶ Included datasets (rows, features):

Bank (45,211, 16), Blood (748, 4), California (20,640, 8), Car (1,728, 8), Credit-g

(1,000, 20), Income (48,842, 14), Jungle (44,819, 6), Diabetes (768, 8), Heart (918,

11).

• Healthcare claims:

▶ 3 binary tasks: End-of-Life (EoL), Surgery, Likelihood of

Hospitalization (LoH).

9



Baselines

• Classical baselines:

▶ Logistic Regression (LR)
▶ Gradient-boosted trees: XGBoost, LightGBM

• Deep tabular baselines:

▶ TabNet (attention over columns), SAINT (attention over rows &

columns), NODE (differentiable tree ensemble)
▶ TabPFN (pretrained Bayesian NN on synthetic tabular data)

• Details:

▶ Hyperparameter tuning for all baselines except TabPFN.
▶ Few-shot setting: no separate validation set ⇒ 4-fold CV on the k

shots for model selection.
▶ Categorical features: one-hot encoding (ordinal encoding tested but

worse).

• Healthcare claims: only LR + LightGBM (runtime constraints).

• Metric: Area under the curve (AUC).

10



Results: Effects of Serialization

• Text Template performs best overall.

• In the zero-shot setting, Text Template outperforms the List Template,
▶ likely because its natural-sentence format is closer to T0’s training distribution.
▶ This gap largely vanishes by ∼8 shots, suggesting that sophisticated serializations

might be unnecessary when some training data exists.

• LLM-based serialization is less reliable:
▶ generated text may hallucinate additional content or omit features, which can

introduce misleading cues and lead to lower performance than fixed templates.

• Ablations converge with more data:
▶ Only Values and Permuted Names perform poorly at zero / very few shots, but

match the main templates once enough training examples are provided.
11



Results: Effects of Serialization

• Healthcare claims: List Template slightly outperforms Text Template.

List Short is only slightly worse, suggesting robustness to incomplete

feature sets.

• Claims-specific finding: selecting the most frequent conditions per

patient works best.

12



Results: TabLLM vs. Baselines

• TabLLM performs best in zero-shot / very-few-shot.
▶ Zero-shot: TabLLM achieves strong performance on most tasks and is on par with

GPT-3 despite T0 being much smaller (11B vs. 175B).
▶ Few-shot: Performance improves with more shots; in the very-few-shot regime,

TabLLM is often substantially better than most baselines.

• TabPFN is best overall; a small number of shots is often sufficient to

catch up to TabLLM.

• LR is frequently the second-best baseline due to extensive parameter

tuning.
13



Discussion

• Zero-shot capability & prior knowledge: Simple template serializations

(List/Text) yield meaningful zero-shot performance, indicating effective

use of the LLM’s prior knowledge.

• Sample efficiency varies by task: stronger on semantically rich datasets

(e.g., Income) and weaker on mostly numeric datasets (e.g., Blood).

• TabLLM relies on the LLM’s pretrained semantics; gains may be limited

when column names/values are out-of-domain (e.g., gene identifiers).

▶ T0’s instruction-tuning contains no medical tasks, which may reduce gains on medical

datasets.

• Ethics & responsible use: Since LLMs can inherit biases and stereotypes

from historical training data, applying TabLLM to sensitive tasks (e.g.,

income or health) requires careful interpretation.

14



Thank you!

15


