

The Kernel Density Integral Transformation (TMLR, 2023)

Reviewer : Seokhun Park

Department of Statistics
Seoul National University

Contents

1 Introduction

2 Experiments

3 Drawbacks of KDIT

Outline

1 Introduction

2 Experiments

3 Drawbacks of KDIT

Introduction

- Traditional methods
 - Min-max scaling
 - ▶ Preserve the shape of each feature's distribution.
 - ▶ Not robust to the effect of outliers.
 - Quantile transformation
 - ▶ Not preserve the shape of each feature's distribution.
 - ▶ Robust to the effect of outliers.
- Proposed method (Kernel Density Integral Transformation)
 - Lies between min–max scaling and quantile transformation.

Proposed Method

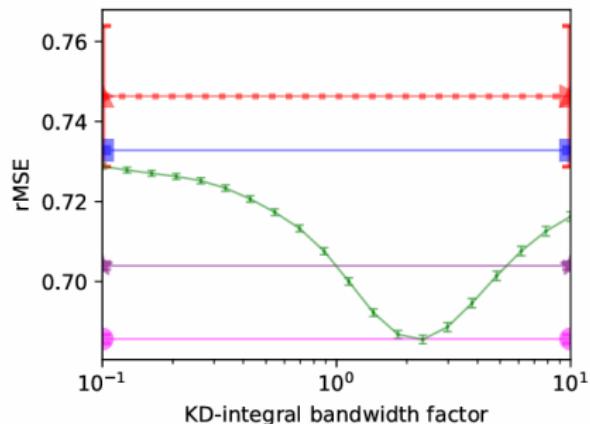
- Consider univariate data $\{X_1, \dots, X_N\}$.
- Gaussian Kernel density estimation:

$$\hat{f}_h(x) = \frac{1}{Nh} \sum_{n=1}^N K\left(\frac{x - X_n}{h}\right), \quad (1)$$

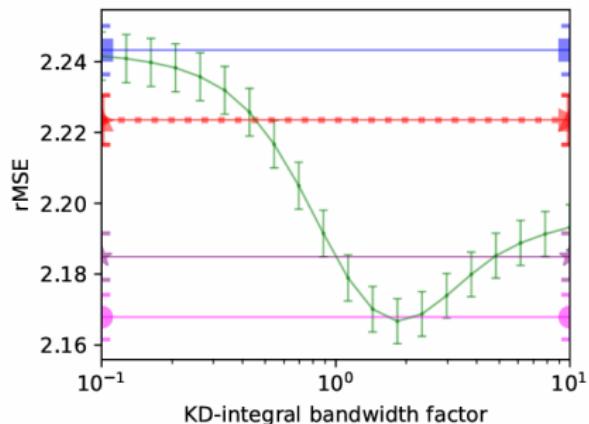
where $K(x) = \exp\left(\frac{-x^2}{2}\right)/\sqrt{2\pi}$ and $h > 0$ is the bandwidth.

- Proposed method:
 - ① Estimate density using the Gaussian Kernel density estimation.
 - ② Preprocessing data via quantile transformation using a estimated density.
- $h \rightarrow \infty$: Proposed method \approx min-max scaling
- $h \rightarrow 0$: Proposed method \approx Quantile transformation.

Outline


1 Introduction

2 Experiments


3 Drawbacks of KDIT

Experiments

(A) CA Housing ($N = 20640, D = 8$)

(B) Abalone ($N = 4177, D = 10$)

- Above figure presents the prediction performance of linear regression model based on data preprocessing methods.
- Red line : Min-max scaling, Blue line : quantile transformation
Green line : proposed method depends on h

Experiments

Data preprocessing method	AUROC (std)
Min-max	0.864 (0.132)
Quantile	0.866 (0.131)
KDIT (h=1)	0.868 (0.129)
KIT (h=turned)	0.869 (0.129)

- Above Table presents the average of the AUROCs for Support Vector Classifier with various data preprocessing methods on various datasets.

Outline

1 Introduction

2 Experiments

3 Drawbacks of KDIT

Drawbacks of KDIT

- ① It requires the entire data as a empirical quantile transformer.
- ② Determining bandwidth parameter h is problematic and computational burden.
- ③ Since the experiments use only classical models, it is unclear whether the method would perform well when applied to models such as deep neural networks.