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The memorization effect
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® The memorization effect(ME) is a phenomenon that deep neural networks
(DNNs) memorize clean data before noisy ones.

® Recent SOTA algorithms for handling noisy label problems are based on the
ME.

® However, the ME may not occur in certain scenarios,

1. labels have an imbalanced distribution.
2. labels are heavily contaminzted.
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Overview of IOFM
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® |et's consider an over-fitted DNN and its feature space, i.e., the map of the

highest hidden layer.

® For a given training sample (x., y«), X« is located close to other inputs sharing

the label y, regardless of anomalousness of y. on the feature space.

® When they consider the original input space, the similarity between x, and its
neighbors, chosen from the feature space, would be quite different on the

original input space depending on whether y, is clean or noisy.

® Conceptually, The IOFM measures how similar the neighbors of a given data
chosen from the feature space are on the input space and decides the data as

clean when the similarity is large.
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Notation

® x ¢ X C RY Observed input vector.

y € [K]: Observed label, where [K] = {1,...,K}.
y& € [K]: Ground-truth label, where [K] = {1,...,K}.

(x,y) is cleanly labeled if y = y&" and noisily labeled if y # y=°.

Let D = {(xi, i), € [n]} be a training data set, and
C" ={(x,y) € D" : y = y#'} be the set of clean labeled samples.

Our goal is to identify the clean labeled subset C** from D' accurately.
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Proposed Method: IOFM

o Let p(x;0) : RY — R¥ be a discriminative DNN parametrized by 6.

® Also, let h(x; 0) be the feature vector of p(x; 6), the output of the DNN'’s
highest hidden layer.

® Furthermore, let p(x; 8)(p(x)) be a DNN that perfectly memorizes D" and
h(x; B)(h(x)) be its feature vector.

® For a given training sample (X, y.) € D%, let (Xnbd, Ynba) € D' be the

nearest to (X, y«) on the feature space, defined by

Xnbd = argmin
x€DI\ {xx*}

‘E(x) —h(x)

’ 2

6/17



Proposed Method: IOFM
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® The authors have noticed a distinct difference in the behavior of py, (x)
depending on its cleanness, which will be utilized for developing the new score.

® That is, the area under py, (x) over the intervals between x. and Xupq, defined

as .
[ B ax. + (1= axona) da
0
is large when y, is clean while it is relatively small when y, is corrupted.

® Let {Xnba,}_, C {xi :yi = yu,i € [n]}\ {x+} be L neighborhood training
inputs of x. in the feature space. Then, they proposed the following averaged

score

~l=

3 /0 By, (a%e + (1 — )xmar)da. (1)
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Proposed Method: IOFM

® Finally, The authors approximate the integration in (1) by the trapezoidal rule

as follows:

1

L H
1
IOFM
(X, Yi) —Z;;T’ (By (x1,n—1) + By (x1,n))

where x; 5 = %x* + %and,/ and H is the number of trapezoids, to have the

IOFM score.
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Improvement of IOFM

® MixUp Loss Function: To enhance the smoothness of a trained DNN
more while keeping memorizing training data, it would be helpful to use
[2, Mixup], whose loss function is given as:

E E  CE(Mix s y2), p (Mixy (x1,x2) ;0
(x1,)1)5(x2,y2)~ D A~ B( v, cx) ( A(}’l )/2) P( A( ! 2) ))

® Use of Multiple IOFM Scores: During the training process of the DNN
until over-fitting, the authors calculate the IOFM scores at different
training epochs and take the average for the final score.

® Computation Time Reduction in Searching Neighbors: This issue
can be addressed by only restricting the neighbor search among a small
subset of randomly sampled training data that share the same label.
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Experiment

Table 1: Comparison of the clean/noisy classification AUC values on the imbalanced CIFAR100. We list the best and final (in the

Dataset CIFAR100

Imbalance type Step Long-tail

Noise type symm. Asymm. symm. Asymm.
Noise rate (1) 0.3 0.5 0.2 0.3 0.5 0.2
Loss 0.958(0.698) | 0.938(0.632) | 0.826(0.674) | 0.939(0.670) | 0.896(0.609) | 0.765(0.667)
Ens-Loss 0.969(0.945) | 0.951(0.912) | 0.829(0.816) | 0.954(0.918) | 0.915(0.873) | 0.796(0.791)
Margin 0.952(0.689) | 0.927(0.626) | 0.847(0.684) | 0.929(0.660) | 0.887(0.603) | 0.793(0.676)
AUM 0.966(0.851) | 0.947(0.779) | 0.871(0.802) | 0.951(0.798) | 0.911(0.727) | 0.827(0.775)
sinlOFM 0.965(0.902) | 0.949(0.874) | 0.862(0.766) | 0.953(0.872) | 0.909(0.833) | 0.826(0.723)
IOFM 0.973(0.958) | 0.958(0.936) | 0.911(0.910) | 0.961(0.942) | 0.927(0.905) | 0.875(0.874)

parentheses) results.

Table 2: Clean/noisy classification AUC results on heavily noisy CIFAR10&100. The best and final (in the parentheses) results

are listed.

Dataset CIFARIO CIFAR100

Noise type Symm. Asymm. Symm. Asymm.
Noise rate () 0.8 0.9 0.4 0.8 0.9 0.4
Loss 0.919(0.569) | 0.836(0.556) | 0.933(0.753) | 0.847(0.557) | 0.708(0.521) | 0.621(0.552)
Ens-Loss 0.947(0.895) | 0.867(0.763) | 0.908(0.901) | 0.873(0.704) | 0.733(0.660) | 0.642(0.638)
Margin 0.918(0.567) | 0.834(0.554) | 0.940(0.756) | 0.833(0.553) | 0.704(0.520) | 0.634(0.553)
AUM 0.948(0.809) | 0.869(0.687) | 0.927(0.874) | 0.874(0.693) | 0.734(0.588) | 0.677(0.637)
sinlOFM 0.924(0.699) | 0.842(0.622) | 0.912(0.825) | 0.859(0.684) | 0.714(0.567) | 0.664(0.607)
I0OFM 0.954(0.907) | 0.887(0.811) | 0.934(0.921) | 0.890(0.806) | 0.746(0.653) | 0.713(0.712)
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DivideMix in semi-supervised learning

® The IOFM can be applied to learn deep classification models with noisy labeled
data.

® In this paper, the authors consider a combination of the IOFM with the [1,
DivideMix], one of the state-of-the-art methods for learning classification
models in the presence of noisy labels.

® To combine the IOFM and DivideMix, the authors simply substitute the
per-sample losses used in the DivideMix with the IOFM scores.
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Experiment

Dataset CIFARI10

Imbalance type Step

Noise type symm Asymm.
Noise rate () 0.3 0.5 0.2 04
Cross-Entropy 7272 | 68.99 | 81.19 | 74.95
Mixup 74.81 | 65.63 | 81.97 | 75.93
DivideMix 85.76 | 85.16 | 87.15 | 78.35
IOFM+DivideMix | 88.19 | 88.07 | 87.35 | 78.73

Table 3: Comparison of the best test accuracies(%) of various

methods on the imbalanced CIFARI10.
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Appendix: Proposal
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We consider two versions of the IOFM: 1) the original
IOFM (IOFM) based on the ensemble of multiple IOFM
scores from multiple epochs, and 2) the IOFM based on
the single score at the last epoch (sinlOFM). We consider
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Appendix: Algorithm

Algorithm 1: [IOFM
In practice, we set (11,15, L, H) = (150, 10, 10, 3).

input Training data: D" = {(x;,y;)}/;. a prediction
model and its feature function: p(-;#) and h(-; ), an
optimizer O, four integers: Ty, 75, L, and H.
1 S« // Ensemble IOFM score set
2: for (ep=1toT}) do

3 MizUp(f(-;8),D",O) / train p(-; #) using MixUp
4:  if (ep mod T, = 0) then
5: ST ¢ ()
6: for (i = 1ton)do
7: s; + sOM(x: ) //TIOFM score of (x;, ;)
8: S"™P «+— append(S"™P,s;) //append s; to S™P
9: end for

10 Sens (7 SCDS + Stmp

11: endif

12: end for

output S
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Appendix: Dividemix & Mixmatch
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Appendix: Dividemix & Mixmatch
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