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Overview

• Background: In large-scale datasets, existing data pruning - the

combinatorial task of selecting a small and representative subset from a

large dataset - approaches become unreliable when the data are

corrupted because they depend on empirical mean estimation, which is

extremely sensitive to outliers.

• Objective: To develop a data pruning method that remains robust under

severe corruption while still selecting a informative subset.

• Problem: Existing pruning approaches rely on centroids or decision

boundaries to select prototypical samples, causing them to discard

non-prototypical but uncorrupted and informative examples near the

decision boundary.

• Solution: This paper proposed method of selecting a k-subset such that

the mean of the subset approximates the geometric median of the

(potentially) noisy dataset over some appropriate embedding space,

ensuring robustness even under arbitrary corruption.
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Notation

• p(x) : Clean data distribution.

• q(x) : Adversarially chosen arbitrary distribution.

• ψ ∈ [0, 1/2) : Corruption fraction.

• pnoisy(x) = (1− ψ)p(x) + ψq(x) : Mixture distribution under corruption.

• DG : Clean sample set, i.e. for xi ∈ Rd i.i.d∼ p(x), x ∈ DG .

• DB : Corrupted sample set, i.e. for xi ∈ Rd i.i.d∼ pnoisy(x), x ∈ DB .

• D = DG ∪ DB : the full dataset.

• ϕ(x) : Encoder mapping raw input x ∈ Rd to an embedding space H

• ωi = ϕ(xi ) : embedded feature vector
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k-Subset Selection via Moment Matching

• In the uncorrupted setting i.e. when ψ = 0, a natural approach for data

pruning is to formulate it as a combinatorial moment matching objective:

argmin
DS⊆D
|DS |=k

[
∆2 (DS ,D) := ∥µ (D)− µ (DS)∥2

]
(1)

where µ(D) = 1
|D|

∑
xi∈D ϕ (xi ), µ (DS) =

1
k

∑
xj∈DS

ϕ (xj).

• However, in the corrupted setting, the moment matching objective can result in

arbitrarily poor solutions.

• The vulnerability can be attributed to the estimation of target moment via

empirical mean - notorious for its sensitivity to outliers.
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Geometric Median and it’s approximation

• Given a finite collection of observations {ϕ (x1) , ϕ (x2) , . . . ϕ (xn)} defined over

Hilbert space H ⊂ Rd , the Geometric Median(GM) µGM is defined as:

µGM = argmin
z∈H

[
ρ(z) :=

n∑
i=1

∥z− ϕ (xi )∥

]
(2)

• The gradient-based optimization of (2) is difficult since the objective involves

the non-smooth term ∥ϕ(xi )− z∥. And for dimensions d ≥ 2, in general, the

geometric median does not admit a closed-form solution.

• However, since the problem is convex, iterative algorithms can be used to

approximate the geometric median efficiently. As a result, several algorithms

have been proposed to compute µGM
ϵ ∈ H, which is called ϵ-accurate GM, i.e

n∑
i=1

∥∥∥µGM
ϵ − ϕ (xi )

∥∥∥ ≤ (1 + ϵ)
n∑

i=1

∥∥∥µGM − ϕ (xi )
∥∥∥
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Robust Moment Matching

• Recall, the goal of solution is to find a k-subset DS such that the empirical

mean of the subset µ (DS) approximately matches µGM
ϵ (D).

• Utilizing µGM
ϵ , the authors aim to solve for the following objective:

argmin
DS⊆D
|DS |=k

(
∆2

GM :=
∥∥∥µGM

ϵ (D)− µ (DS)
∥∥∥2
)

(3)

where µ (DS) =
1
k

∑
xj∈DS

ϕ (xj).

• Since the optimization problem above is combinatorial in nature, a

herding-style greedy minimization procedure [3, Yutian Chen], which iteratively

builds the subset by adding one sample at a time.

• This herding procedure is closely related to the Frank–Wolfe algorithm [1,

Francis Bach], since it iteratively selects points that best align with the current

descent direction over the convex hull of {ϕ(x) | x ∈ D}.

• In addition, the GM is guaranteed to lie in the relative interior of the convex

hull of the majority (good) points i.e. µGM ∈ conv ({ϕ(x) | x ∈ DG}) [2,
Boyd], making it an attractive choice for estimating the target mean.
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Proposed Algorithm

• Starting with a suitably chosen θ0 ∈ H; their method repeatedly performs the

following updates, adding one sample at a time. For t = 1, · · · , k :

xt+1 := argmax
x∈D/{x1,··· ,xt}

⟨θt , ϕ(x)⟩

θt+1 := θt +
(
µGM

ϵ (D)− ϕ (xt+1)
)

• If θ0 = µGM
ϵ , then θT = (T + 1)µGM

ϵ (D)−
∑T

t=1 ϕ (xt) and

xT+1 = argmax
x∈D

[〈
µGM

ϵ (D), ϕ(x)
〉
− 1

T + 1

T∑
t=1

ω (x, xt)

]

where ω (x, x′) = ⟨ϕ(x), ϕ (x′)⟩H.

• The first term ⟨µGM
ϵ (D), ϕ(x)⟩ encourages selecting a point whose feature

embedding is well aligned with the target robust center µGM
ϵ (D).

• The second term − 1
T+1

∑T
t=1 ω(x , xt) penalizes points that are too similar to

the already selected samples, preventing redundant selections.
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Proposed Algorithm
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Experiments

• Experiments are divided into two fundamental learning paradigms:

• Image Classification

• Image Generation
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Appendix

• Corruption method list

1. Gaussian Noise: Adding random perturbations sampled from a standard

normal distribution.

2. Random Occlusion: Mimics missing or occluded regions in images by

replacing random patches with black or noisy pixels.

3. Resolution Reduction: Simulates low-quality images by applying aggressive

down-sampling and up-sampling, introducing pixelation artifacts.

4. Fog: Emulates atmospheric distortions by overlaying a simulated fog

effect.

5. Motion Blur: Models dynamic distortions caused by camera motion or

moving objects during exposure.

• Pruning method list

1. Easy: This strategy selects samples that are closest to the centroid of the

dataset. These ”easy” samples are presumed to be representative of the

core data distribution.

2. Hard: This approach selects samples that are farthest from the centroid.

3. Moderate: This strategy selects samples that are closest to the median

distance from the centroid.

4. Kernel Herding: kernel herding employs a greedy algorithm to select

samples that minimize the discrepancy between the empirical distribution

and the target distribution.
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