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Overview

® Background: In large-scale datasets, existing data pruning - the
combinatorial task of selecting a small and representative subset from a
large dataset - approaches become unreliable when the data are
corrupted because they depend on empirical mean estimation, which is

extremely sensitive to outliers.

® Objective: To develop a data pruning method that remains robust under

severe corruption while still selecting a informative subset.

® Problem: Existing pruning approaches rely on centroids or decision
boundaries to select prototypical samples, causing them to discard
non-prototypical but uncorrupted and informative examples near the
decision boundary.

® Solution: This paper proposed method of selecting a k-subset such that
the mean of the subset approximates the geometric median of the
(potentially) noisy dataset over some appropriate embedding space,

ensuring robustness even under arbitrary corruption.
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Notation

p(x) : Clean data distribution.

q(x) : Adversarially chosen arbitrary distribution.

1 € [0,1/2) : Corruption fraction.

Proisy(x) = (1 — ¥)p(x) + ¥q(x) : Mixture distribution under corruption.

D : Clean sample set, i.e. for x; € RY g p(x), x € Dg.
Ds : Corrupted sample set, i.e. for x; € RY "4’ Proisy(X), x € Dg.

D = D¢ U Dg : the full dataset.

#(x) : Encoder mapping raw input x € R? to an embedding space H

wi = ¢(x;) : embedded feature vector
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k-Subset Selection via Moment Matching

® |n the uncorrupted setting i.e. when ¢ = 0, a natural approach for data
pruning is to formulate it as a combinatorial moment matching objective:

argmin [A% (Ds, D) := (D) ~ (D) ] (1)
|Ds|=k

where (D) = 77 Yyep @ (xi), 1(Ds) = 1 Xy epg @ (%)-
® However, in the corrupted setting, the moment matching objective can result in

arbitrarily poor solutions.

® The vulnerability can be attributed to the estimation of target moment via

empirical mean - notorious for its sensitivity to outliers.
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Geometric Median and it's approximation

® Given a finite collection of observations {¢ (x1),® (x2),...¢ (xn)} defined over
Hilbert space H C RY, the Geometric Median(GM) u“™ is defined as:

u™ = argmin | p(2) —Z||z—<z>(x i @

® The gradient-based optimization of (2) is difficult since the objective involves
the non-smooth term ||¢(x;) — z||. And for dimensions d > 2, in general, the

geometric median does not admit a closed-form solution.

® However, since the problem is convex, iterative algorithms can be used to
approximate the geometric median efficiently. As a result, several algorithms
have been proposed to compute MSM € H, which is called e-accurate GM, i.e

> Ju ote |

GM é(x)
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Robust Moment Matching

® Recall, the goal of solution is to find a k-subset Ds such that the empirical
mean of the subset u (Ds) approximately matches puS™ (D).

® Utilizing uEGM, the authors aim to solve for the following objective:

a@mm<A&m:Hﬁmﬂn—uﬂkwj 3)
DsCD
|Ds|=k

where 1(Ds) = 13, p. & ().
® Since the optimization problem above is combinatorial in nature, a
herding-style greedy minimization procedure [3, Yutian Chen], which iteratively

builds the subset by adding one sample at a time.

® This herding procedure is closely related to the Frank-Wolfe algorithm [1,
Francis Bach], since it iteratively selects points that best align with the current

descent direction over the convex hull of {¢(x) | x € D}.

® |n addition, the GM is guaranteed to lie in the relative interior of the convex
hull of the majority (good) points i.e. u“™ € conv ({#(x) | x € Dg}) [2,

Boyd], making it an attractive choice for estimating the target mean.
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Proposed Algorithm

® Starting with a suitably chosen 8y € H; their method repeatedly performs the
following updates, adding one sample at a time. For t =1,--- [k :

Xe1 = argmax  (0¢, d(x))
x€D/{x1,-- e}

0+ (nM(D) ~ 0 (i)

9t+1 :

® If @ = puSM, then 7 = (T + 1)uE™M(D) - 3, ¢ (x:) and

<MSM(D)’ ¢>(x)> — %H Zw (x, xt):|

where w (x,x") = (p(x), ¢ (X)),

® The first term (uS™ (D), ¢(x)) encourages selecting a point whose feature

X741 = arg max
x€D

embedding is well aligned with the target robust center uS™ (D).

® The second term ——25 3=7 , w(x, x:) penalizes points that are too similar to
the already selected samples, preventing redundant selections.

8/15



Proposed Algorithm

Algorithm 1 GEOMETRIC MEDIAN (GM) MATCHING

(initialization)

A finite collection of grossly corrupted (Definition 1) observations D = {x; € R4 },; pretrained
encoder ¢(-) : RY s R® e.g. CLIP (Radford et al., 2021b); initial weight vector 8y € R*; number of
sampling batches B, population fraction for GM computation 0 < ygu < 1.

(compute embeddings)

P = {w; = ¢(xi) € R* : Vx; € D}

(pick random ngy-subset for GM computation)
iid

Dgy ~ @, where, ngy = [Pau| = You|P| < n

{compute e-approximate geometric median via Algorithm 2)

uM(Do) = argminyep: 3, caq, 12 = will

(partition data into batches)

D= UE:1 Dy

(initialize subset)

DS — @

for batchindexb=1,...8 do

(load batch embeddings)

(I)b={w,€q)ZXl‘€'Db}

for iterationst = 0,1,...,k/B do

(find embedding closest to 6;)

w = argmax,, g, (0, wi)

(update direction parameter)

011 = 0, + | uSM(B,) — w}
(update selected subset)
Ds := Ds Ux where, w = ¢(x)

(update the batch embedding set)
D = Dp \w

end

end
return: Ds
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Experiments

® Experiments are divided into two fundamental learning paradigms:

® |mage Classification

® |mage Generation

CIFAR-100
Method / Ratio 20% 30% 40% 60% 80% 100% Mean 1
Random 50.26+3.24  53.61+2.73  64.32+1.77  71.03£0.75  74.12+£0.56  78.14+0.55  62.67
Herding 48.39+1.42  50.89+0.97  62.99+0.61  70.61+0.44 74214049  78.14+0.55 61.42
Forgetting 35.57+1.40  49.83+091  59.65+2.50  73.34+0.39  77.50+£0.53  78.14+0.55 59.18
‘GraNd-score 42.65+£1.39  53.14+£128  60.52+0.79  69.70+0.68  74.67+0.79  78.14+0.55 60.14
EL2N-score 27.32+1.16  41.98+£0.54  50.47+1.20  69.23+1.00  75.964+0.88  78.14+0.55 52.99
Optimization-based ~ 42.16+£3.30  53.19+£2.14  58.93+0.98  68.93+0.70  75.62+0.33  78.14+0.55 59.77
Self-sup.-selection 44454251  54.63£2.10 62.91+1.20 70.70+0.82  75.294+0.45  78.14+0.55 61.60
Moderate-DS 51.83+0.52  57.79+1.61  64.92+093  71.87+£091  7544+040 78.14+0.55  64.37
GM Matching 5593+ 048 63.08+0.57 66.59+1.18 70.82+0.59 74.63+0.86 78.14+0.55 66.01
Tiny ImageNet
Random 24.02+0.41  29.79+0.27 34414046  40.96+0.47  45.744+0.61  49.36+0.25 34.98
Herding 24.09+0.45  29.39+0.53  34.13+£0.37  40.86+0.61  45.454+0.33  49.36+0.25 34.78
Forgetting 22374071  28.67+£0.54  33.64+0.32  41.14+0.43  46.77+0.31  49.36+0.25 34.52
‘GraNd-score 23.56+0.52  29.66+0.37  34.33+0.50  40.77+0.42  45.964+0.56  49.36+0.25 34.86
EL2N-score 19.74+0.26  26.58+0.40  31.93+0.28  39.12+0.46  45.32+0.27  49.36+0.25 32.54
Optimization-based ~ 13.88+£2.17  23.75£1.62 29.77+0.94  37.054+2.81 43.76+1.50  49.36+0.25 29.64
Self-sup.-selection ~ 20.89+0.42  27.66+0.50 32504030  39.64+0.39 44944034 49.36+025  33.13
Moderate-DS 25294038  30.57£0.20 34.81+0.51 41.454+0.44  46.06+0.33  49.36+0.25 35.64
GM Matching 27.88+0.19  33.15+0.26  36.92+0.40 42.48+0.12 46.75+0.51  49.36+0.25 37.44

Table 1: (CLEAN) IMAGE CLASSIFICATION: Comparing Downstream Test Accuracy (Top-1) (%) of several
pruning algorithms (Section 6.1) on CIFAR-100 and Tiny-ImageNet in the uncorrupted setting. ResNet-50 is

used both as proxy (pretrained) and for downstream classification.
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Experiments

CIFAR-100

Method / Ratio 20% 30% 40% 60% 80% 100% Mean 1

5% Feature Corruption
Random 43.14+3.04  54.19+£292  64.21+£2.39 69.50+£1.06  72.90+0.52 77.26+0.39 60.79
Herding 42.50£1.27  53.884+3.07 60.54+£094 69.15£055 73.47+£0.89 77.26+0.39 59.81
Forgetting 32.42+0.74  49.72+£1.64 54844220 70.224+2.00 75.19+0.40 77.26+0.39 56.48
GraNd-score 42.24+0.57  53.48+0.76  60.17+1.66 69.16+0.81 73.35+0.81 77.26+0.39 59.68
EL2N-score 26.13£1.75  39.01+£1.42 49.89+1.87 68.36+141 7310036 77.26+0.39 51.30
Optimization-based ~ 38.25+£3.04 50.88+£6.07 57.264+0.93 68.02+£039 73.77£0.56 77.26+0.39 57.64
Self-sup.-selection 44.24+0.48  55.99+1.21 61.03+0.59 69.96+1.07 74.56+1.17 77.26+0.39 61.16
Moderate-DS 46.78+£1.90 57.36+£1.22  6540+1.19  71.46+0.19 75.64:0.61 77.26+0.39 63.33
GM Matching 49.50+0.72  60.23+0.88 66.25+0.51 72914026 75.10£0.29 77.26+0.39 64.80

10% Feature Corruption
Random 43.27+£3.01  53.94+278  62.17+1.29 68.41+1.21 7350073  76.50+0.63 60.26
Herding 44.34+1.07  53.31+1.49  60.13+0.38  68.20+0.74  74.34+1.07  76.50+0.63 60.06
Forgetting 30.43+£0.70  47.50+£1.43  53.1640.44 70364082 75.11+0.71  76.50+0.63 5531
GraNd-score 36.36+1.06 52.26+0.66 60.224+1.39 68.96+0.62 72.78+0.51 76.50+0.63 58.12
EL2N-score 21.75£1.56  30.80+2.23 41.064+1.23 64824148 7347+1.30 76.50+0.63 46.38
Optimization-based  37.22+0.39 4892+138 56.884+1.48 67.33+2.15 72944190 76.50+0.63 56.68
Self-sup.-selection 42.01+1.31 54474119 61.37+0.68 68.52+1.24 74731036 76.50+0.63 60.22
Moderate-DS 47.02+£0.66  55.60+£1.67 62.18+1.86 71.83+0.78 75.66:0.66 76.50+0.63 62.46
GM Matching 48.86+-1.02 60.15+0.43 66.92+0.28 72.03+038 73.71+0.19 76.50+0.63 6433

20% Feature Corruption
Random 40.99+1.46  50.38+1.39  57.244+0.65 65.21+1.31  71.74+0.28 74.92+0.88 57.11
Herding 44424046  53.57+0.31  60.72+£1.78 69.09+1.73 73.08+098 74.92+0.88 60.18
Forgetting 26.39+0.17 40784202 49954231  65.71+1.12  73.67+1.12  74.92+0.88 51.30
GraNd-score 36.33+£2.66 46214148 55514076 6459240 70.14£1.36  74.92+0.88 54.56
EL2N-score 21.64£2.03 23.78f£1.660 3571%1.17 56.324+0.86 69.66+0.43 74.9210.88 41.42
Optimization-based  33.42+£1.60 4537+£281 54.06+1.74 65.19+1.27 70.06+0.83 7492+0.88 54.42
Self-sup.-selection 42.61+£2.44  54.04+190 59.51£1.22 68.97+£096 7233020 74.92+0.88 60.01
Moderate-DS 42.98+0.87 55.80+0.95 61.84+1.96 70.05+£1.29 73.67+0.30 74.92+0.88 60.87
GM Matching 47.12+0.64  59.17+£092  63.45+0.34  7L70+0.60 74.60+£1.03 74921088 6321

Table 3: (FEATURE CORRUPTION) IMAGE CLASSIFICATION ( CIFAR 100 ): Comparing the downstream
test accuracy of various pruning methods when 5%, 10%, and 20% of images are corrupted. Results are reported
across different selection ratios (20%-100%) using ResNet-50 as both the proxy and downstream classifier.
GM Matching consistently outperforms all baselines, demonstrating superior robustness to corrupted data, with

increasing performance gains at higher corruption levels.
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Appendix

® Corruption method list

1.

Gaussian Noise: Adding random perturbations sampled from a standard
normal distribution.

Random Occlusion: Mimics missing or occluded regions in images by
replacing random patches with black or noisy pixels.

Resolution Reduction: Simulates low-quality images by applying aggressive
down-sampling and up-sampling, introducing pixelation artifacts.

Fog: Emulates atmospheric distortions by overlaying a simulated fog
effect.

Motion Blur: Models dynamic distortions caused by camera motion or

moving objects during exposure.

® Pruning method list

1.

Easy: This strategy selects samples that are closest to the centroid of the
dataset. These "easy” samples are presumed to be representative of the
core data distribution.

Hard: This approach selects samples that are farthest from the centroid.
Moderate: This strategy selects samples that are closest to the median
distance from the centroid.

Kernel Herding: kernel herding employs a greedy algorithm to select
samples that minimize the discrepancy between the empirical distribution

and the target distribution.
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