

Geometric Median (GM) Matching for Robust k-Subset Selection from Noisy Data

Anish Acharya and Sujay Sanghavi and Alexandros G. Dimakis and
Inderjit S Dhillon
ICML 2025

Department of Statistics, Seoul National University
Presented by Sangmoon Han

2025-11-25

Table of Contents

1. Overview

2. Proposed Method

3. Proposed Algorithm

4. Experiments

Overview

- **Background:** In large-scale datasets, existing data pruning - the combinatorial task of selecting a small and representative subset from a large dataset - approaches become unreliable when the data are corrupted because they depend on **empirical mean** estimation, which is extremely sensitive to outliers.
- **Objective:** To develop a data pruning method that remains robust under severe corruption while still selecting a informative subset.
- **Problem:** Existing pruning approaches rely on centroids or decision boundaries to select prototypical samples, causing them to discard non-prototypical but uncorrupted and informative examples near the decision boundary.
- **Solution:** This paper proposed method of selecting a k -subset such that the mean of the subset approximates the **geometric median** of the (potentially) noisy dataset over some appropriate **embedding space**, ensuring robustness even under arbitrary corruption.

Notation

- $p(x)$: Clean data distribution.
- $q(x)$: Adversarially chosen arbitrary distribution.
- $\psi \in [0, 1/2]$: Corruption fraction.
- $p_{\text{noisy}}(x) = (1 - \psi)p(x) + \psi q(x)$: Mixture distribution under corruption.
- D_G : Clean sample set, i.e. for $\mathbf{x}_i \in \mathbb{R}^d \stackrel{i.i.d}{\sim} p(x)$, $x \in D_G$.
- D_B : Corrupted sample set, i.e. for $\mathbf{x}_i \in \mathbb{R}^d \stackrel{i.i.d}{\sim} p_{\text{noisy}}(x)$, $x \in D_B$.
- $D = D_G \cup D_B$: the full dataset.
- $\phi(x)$: Encoder mapping raw input $x \in \mathbb{R}^d$ to an embedding space H
- $\omega_i = \phi(x_i)$: embedded feature vector

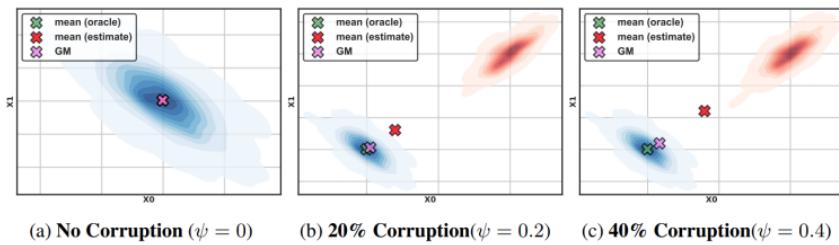
k -Subset Selection via Moment Matching

- In the uncorrupted setting i.e. when $\psi = 0$, a natural approach for data pruning is to formulate it as a combinatorial moment matching objective:

$$\arg \min_{\substack{\mathcal{D}_S \subseteq \mathcal{D} \\ |\mathcal{D}_S|=k}} \left[\Delta^2 (\mathcal{D}_S, \mathcal{D}) := \|\boldsymbol{\mu}(\mathcal{D}) - \boldsymbol{\mu}(\mathcal{D}_S)\|^2 \right] \quad (1)$$

where $\boldsymbol{\mu}(\mathcal{D}) = \frac{1}{|\mathcal{D}|} \sum_{\mathbf{x}_i \in \mathcal{D}} \phi(\mathbf{x}_i)$, $\boldsymbol{\mu}(\mathcal{D}_S) = \frac{1}{k} \sum_{\mathbf{x}_j \in \mathcal{D}_S} \phi(\mathbf{x}_j)$.

- However, in the corrupted setting, the moment matching objective can result in arbitrarily poor solutions.
- The vulnerability can be attributed to the estimation of target moment via **empirical mean** - notorious for its sensitivity to outliers.



Geometric Median and its approximation

- Given a finite collection of observations $\{\phi(\mathbf{x}_1), \phi(\mathbf{x}_2), \dots, \phi(\mathbf{x}_n)\}$ defined over Hilbert space $\mathcal{H} \subset \mathbb{R}^d$, the Geometric Median(GM) μ^{GM} is defined as:

$$\mu^{\text{GM}} = \arg \min_{\mathbf{z} \in \mathcal{H}} \left[\rho(\mathbf{z}) := \sum_{i=1}^n \|\mathbf{z} - \phi(\mathbf{x}_i)\| \right] \quad (2)$$

- The gradient-based optimization of (2) is difficult since the objective involves the non-smooth term $\|\phi(\mathbf{x}_i) - \mathbf{z}\|$. And for dimensions $d \geq 2$, in general, the geometric median does not admit a closed-form solution.
- However, since the problem is **convex**, iterative algorithms can be used to approximate the geometric median efficiently. As a result, several algorithms have been proposed to compute $\mu_\epsilon^{\text{GM}} \in \mathcal{H}$, which is called ϵ -accurate GM, i.e

$$\sum_{i=1}^n \left\| \mu_\epsilon^{\text{GM}} - \phi(\mathbf{x}_i) \right\| \leq (1 + \epsilon) \sum_{i=1}^n \left\| \mu^{\text{GM}} - \phi(\mathbf{x}_i) \right\|$$

Robust Moment Matching

- Recall, the goal of solution is to find a k -subset \mathcal{D}_S such that the empirical mean of the subset $\boldsymbol{\mu}(\mathcal{D}_S)$ approximately matches $\boldsymbol{\mu}_\epsilon^{\text{GM}}(\mathcal{D})$.
- Utilizing $\boldsymbol{\mu}_\epsilon^{\text{GM}}$, the authors aim to solve for the following objective:

$$\arg \min_{\substack{\mathcal{D}_S \subseteq \mathcal{D} \\ |\mathcal{D}_S|=k}} \left(\Delta_{\text{GM}}^2 := \left\| \boldsymbol{\mu}_\epsilon^{\text{GM}}(\mathcal{D}) - \boldsymbol{\mu}(\mathcal{D}_S) \right\|^2 \right) \quad (3)$$

where $\boldsymbol{\mu}(\mathcal{D}_S) = \frac{1}{k} \sum_{\mathbf{x}_j \in \mathcal{D}_S} \phi(\mathbf{x}_j)$.

- Since the optimization problem above is combinatorial in nature, a herding-style greedy minimization procedure [3, [Yutian Chen](#)], which iteratively builds the subset by adding one sample at a time.
- This herding procedure is closely related to the Frank–Wolfe algorithm [1, [Francis Bach](#)], since it iteratively selects points that best align with the current descent direction over the convex hull of $\{\phi(x) \mid x \in \mathcal{D}\}$.
- In addition, the GM is guaranteed to lie in the relative interior of the convex hull of the majority (good) points i.e. $\boldsymbol{\mu}^{\text{GM}} \in \text{conv}(\{\phi(x) \mid x \in \mathcal{D}_G\})$ [2, [Boyd](#)], making it an attractive choice for estimating the target mean.

Proposed Algorithm

- Starting with a suitably chosen $\theta_0 \in \mathcal{H}$; their method repeatedly performs the following updates, adding one sample at a time. For $t = 1, \dots, k$:

$$\begin{aligned}\mathbf{x}_{t+1} &:= \arg \max_{\mathbf{x} \in \mathcal{D} / \{\mathbf{x}_1, \dots, \mathbf{x}_t\}} \langle \theta_t, \phi(\mathbf{x}) \rangle \\ \theta_{t+1} &:= \theta_t + \left(\mu_{\epsilon}^{\text{GM}}(\mathcal{D}) - \phi(\mathbf{x}_{t+1}) \right)\end{aligned}$$

- If $\theta_0 = \mu_{\epsilon}^{\text{GM}}$, then $\theta_T = (T+1)\mu_{\epsilon}^{\text{GM}}(\mathcal{D}) - \sum_{t=1}^T \phi(\mathbf{x}_t)$ and

$$\mathbf{x}_{T+1} = \arg \max_{\mathbf{x} \in \mathcal{D}} \left[\left\langle \mu_{\epsilon}^{\text{GM}}(\mathcal{D}), \phi(\mathbf{x}) \right\rangle - \frac{1}{T+1} \sum_{t=1}^T \omega(\mathbf{x}, \mathbf{x}_t) \right]$$

where $\omega(\mathbf{x}, \mathbf{x}') = \langle \phi(\mathbf{x}), \phi(\mathbf{x}') \rangle_{\mathcal{H}}$.

- The first term $\langle \mu_{\epsilon}^{\text{GM}}(\mathcal{D}), \phi(\mathbf{x}) \rangle$ encourages selecting a point whose feature embedding is well aligned with the target robust center $\mu_{\epsilon}^{\text{GM}}(\mathcal{D})$.
- The second term $-\frac{1}{T+1} \sum_{t=1}^T \omega(\mathbf{x}, \mathbf{x}_t)$ penalizes points that are too similar to the already selected samples, preventing redundant selections.

Proposed Algorithm

Algorithm 1 GEOMETRIC MEDIAN (GM) MATCHING

(initialization)

A finite collection of grossly corrupted (Definition 1) observations $\mathcal{D} = \{\mathbf{x}_i \in \mathbb{R}^d\}_{i=1}^n$; pretrained encoder $\phi(\cdot) : \mathbb{R}^d \rightarrow \mathbb{R}^s$ e.g. CLIP (Radford et al., 2021b); initial weight vector $\theta_0 \in \mathbb{R}^s$; number of sampling batches B , population fraction for GM computation $0 < \gamma_{\text{GM}} \leq 1$.

(compute embeddings)

$$\Phi = \{\omega_i = \phi(\mathbf{x}_i) \in \mathbb{R}^s : \forall \mathbf{x}_i \in \mathcal{D}\}$$

(pick random n_{GM} -subset for GM computation)

$$\Phi_{\text{GM}} \stackrel{i.i.d.}{\sim} \Phi, \text{ where, } n_{\text{GM}} = |\Phi_{\text{GM}}| = \gamma_{\text{GM}} |\Phi| \leq n$$

(compute ϵ -approximate geometric median via Algorithm 2)

$$\mu_{\epsilon}^{\text{GM}}(\Phi_{\text{GM}}) = \arg \min_{\mathbf{z} \in \mathbb{R}^s} \sum_{\omega_i \in \Phi_{\text{GM}}} \|\mathbf{z} - \omega_i\|$$

(partition data into batches)

$$\mathcal{D} = \bigcup_{b=1}^B \mathcal{D}_b$$

(initialize subset)

$$\mathcal{D}_{\mathcal{S}} \leftarrow \emptyset$$

for batch index $b = 1, \dots, B$ **do**

 (load batch embeddings)

$$\Phi_b = \{\omega_i \in \Phi : \mathbf{x}_i \in \mathcal{D}_b\}$$

for iterations $t = 0, 1, \dots, k/B$ **do**

 (find embedding closest to θ_t)

$$\omega := \arg \max_{\omega_i \in \Phi_b} \langle \theta_t, \omega_i \rangle$$

 (update direction parameter)

$$\theta_{t+1} := \theta_t + \left[\mu_{\epsilon}^{\text{GM}}(\Phi_b) - \omega \right]$$

 (update selected subset)

$$\mathcal{D}_{\mathcal{S}} := \mathcal{D}_{\mathcal{S}} \cup \mathbf{x} \text{ where, } \omega = \phi(\mathbf{x})$$

 (update the batch embedding set)

$$\Phi_b := \Phi_b \setminus \omega$$

end

end

return: $\mathcal{D}_{\mathcal{S}}$

Experiments

- Experiments are divided into two fundamental learning paradigms:
 - Image Classification
 - Image Generation

Method / Ratio	CIFAR-100						
	20%	30%	40%	60%	80%	100%	Mean ↑
Random	50.26±3.24	53.61±2.73	64.32±1.77	71.03±0.75	74.12±0.56	78.14±0.55	62.67
Herding	48.39±1.42	50.89±0.97	62.99±0.61	70.61±0.44	74.21±0.49	78.14±0.55	61.42
Forgetting	35.57±1.40	49.83±0.91	59.65±2.50	73.34±0.39	77.50±0.53	78.14±0.55	59.18
GrANd-score	42.65±1.39	53.14±1.28	60.52±0.79	69.70±0.68	74.67±0.79	78.14±0.55	60.14
EL2N-score	27.32±1.16	41.98±0.54	50.47±1.20	69.23±1.00	75.96±0.88	78.14±0.55	52.99
Optimization-based	42.16±3.30	53.19±2.14	58.93±0.98	68.93±0.70	75.62±0.33	78.14±0.55	59.77
Self-sup.-selection	44.45±2.51	54.63±2.10	62.91±1.20	70.70±0.82	75.29±0.45	78.14±0.55	61.60
Moderate-DS	51.83±0.52	57.79±1.61	64.92±0.93	71.87±0.91	75.44±0.40	78.14±0.55	64.37
GM Matching	55.93± 0.48	63.08± 0.57	66.59± 1.18	70.82± 0.59	74.63± 0.86	78.14± 0.55	66.01
Tiny ImageNet							
Random	24.02±0.41	29.79±0.27	34.41±0.46	40.96±0.47	45.74±0.61	49.36±0.25	34.98
Herding	24.09±0.45	29.39±0.53	34.13±0.37	40.86±0.61	45.45±0.33	49.36±0.25	34.78
Forgetting	22.37±0.71	28.67±0.54	33.64±0.32	41.14±0.43	46.77±0.31	49.36±0.25	34.52
GrANd-score	23.56±0.52	29.66±0.37	34.33±0.50	40.77±0.42	45.96±0.56	49.36±0.25	34.86
EL2N-score	19.74±0.26	26.58±0.40	31.93±0.28	39.12±0.46	45.32±0.27	49.36±0.25	32.54
Optimization-based	13.88±2.17	23.75±1.62	29.77±0.94	37.05±2.81	43.76±1.50	49.36±0.25	29.64
Self-sup.-selection	20.89±0.42	27.66±0.50	32.50±0.30	39.64±0.39	44.94±0.34	49.36±0.25	33.13
Moderate-DS	25.29±0.38	30.57±0.20	34.81±0.51	41.45±0.44	46.06±0.33	49.36±0.25	35.64
GM Matching	27.88± 0.19	33.15± 0.26	36.92± 0.40	42.48± 0.12	46.75±0.51	49.36±0.25	37.44

Table 1: (**CLEAN**) IMAGE CLASSIFICATION: Comparing Downstream Test Accuracy (Top-1) (%) of several pruning algorithms (Section 6.1) on CIFAR-100 and Tiny-ImageNet in the uncorrupted setting. ResNet-50 is used both as proxy (pretrained) and for downstream classification.

Experiments

Method / Ratio	CIFAR-100						
	20%	30%	40%	60%	80%	100%	Mean ↑
5% Feature Corruption							
Random	43.14±3.04	54.19±2.92	64.21±2.39	69.50±1.06	72.90±0.52	77.26±0.39	60.79
Herding	42.50±1.27	53.88±3.07	60.54±0.94	69.15±0.55	73.47±0.89	77.26±0.39	59.81
Forgetting	32.42±0.74	49.72±1.64	54.84±2.20	70.22±2.00	75.19±0.40	77.26±0.39	56.48
GraNd-score	42.24±0.57	53.48±0.76	60.17±1.66	69.16±0.81	73.35±0.81	77.26±0.39	59.68
EL2N-score	26.13±1.75	39.01±1.42	49.89±1.87	68.36±1.41	73.10±0.36	77.26±0.39	51.30
Optimization-based	38.25±3.04	50.88±6.07	57.26±0.93	68.02±0.39	73.77±0.56	77.26±0.39	57.64
Self-sup.-selection	44.24±0.48	55.99±1.21	61.03±0.59	69.96±1.07	74.56±1.17	77.26±0.39	61.16
Moderate-DS	46.78±1.90	57.36±1.22	65.40±1.19	71.46±0.19	75.64±0.61	77.26±0.39	63.33
GM Matching	49.50±0.72	60.23±0.88	66.25±0.51	72.91±0.26	75.10±0.29	77.26±0.39	64.80
10% Feature Corruption							
Random	43.27±3.01	53.94±2.78	62.17±1.29	68.41±1.21	73.50±0.73	76.50±0.63	60.26
Herding	44.34±1.07	53.31±1.49	60.13±0.38	68.20±0.74	74.34±1.07	76.50±0.63	60.06
Forgetting	30.43±0.70	47.50±1.43	53.16±0.44	70.36±0.82	75.11±0.71	76.50±0.63	55.31
GraNd-score	36.36±1.06	52.26±0.66	60.22±1.39	68.96±0.62	72.78±0.51	76.50±0.63	58.12
EL2N-score	21.75±1.56	30.80±2.23	41.06±1.23	64.82±1.48	73.47±1.30	76.50±0.63	46.38
Optimization-based	37.22±0.39	48.92±1.38	56.88±1.48	67.33±2.15	72.94±1.90	76.50±0.63	56.68
Self-sup.-selection	42.01±1.31	54.47±1.19	61.37±0.68	68.52±1.24	74.73±0.36	76.50±0.63	60.22
Moderate-DS	47.02±0.66	55.60±1.67	62.18±1.86	71.83±0.78	75.66±0.66	76.50±0.63	62.46
GM Matching	48.86±1.02	60.15±0.43	66.92±0.28	72.03±0.38	73.71±0.19	76.50±0.63	64.33
20% Feature Corruption							
Random	40.99±1.46	50.38±1.39	57.24±0.65	65.21±1.31	71.74±0.28	74.92±0.88	57.11
Herding	44.42±0.46	53.57±0.31	60.72±1.78	69.09±1.73	73.08±0.98	74.92±0.88	60.18
Forgetting	26.39±0.17	40.78±2.02	49.95±2.31	65.71±1.12	73.67±1.12	74.92±0.88	51.30
GraNd-score	36.33±2.66	46.21±1.48	55.51±0.76	64.59±2.40	70.14±1.36	74.92±0.88	54.56
EL2N-score	21.64±2.03	23.78±1.66	35.71±1.17	56.32±0.86	69.66±0.43	74.92±0.88	41.42
Optimization-based	33.42±1.60	45.37±2.81	54.06±1.74	65.19±1.27	70.06±0.83	74.92±0.88	54.42
Self-sup.-selection	42.61±2.44	54.04±1.90	59.51±1.22	68.97±0.96	72.33±0.20	74.92±0.88	60.01
Moderate-DS	42.98±0.87	55.80±0.95	61.84±1.96	70.05±1.29	73.67±0.30	74.92±0.88	60.87
GM Matching	47.12±0.64	59.17±0.92	63.45±0.34	71.70±0.60	74.60±1.03	74.92±0.88	63.21

Table 3: **(FEATURE CORRUPTION) IMAGE CLASSIFICATION (CIFAR 100)**: Comparing the downstream test accuracy of various pruning methods when 5%, 10%, and 20% of images are corrupted. Results are reported across different selection ratios (20%-100%) using **ResNet-50** as both the proxy and downstream classifier. GM Matching consistently outperforms all baselines, demonstrating superior robustness to corrupted data, with increasing performance gains at higher corruption levels.

Experiments

3	0	7	8	7	8	1	9
1	7	6	3	2	1	4	0
0	1	5	5	1	3	6	1
9	3	5	2	8	3	5	1
6	7	7	9	4	9	0	1
9	3	6	6	7	3	6	3
2	0	0	7	1	6	9	7
9	5	5	9	0	1	6	4

(a) Random

3	5	7	0	7	8	6	9
8	7	6	3	2	6	9	0
0	4	5	0	7	8	6	8
2	8	9	6	6	1	5	2
4	2	7	9	4	9	4	2
9	3	0	6	7	3	6	3
2	0	8	7	8	6	9	7
9	4	5	9	2	6	6	4

(b) Easy

3	0	7	8	7	8	1	4
1	1	6	2	2	1	1	0
0	1	5	5	1	3	6	1
8	0	5	1	8	3	5	1
4	1	7	7	4	9	0	1
1	3	1	0	7	3	0	0
2	0	0	7	1	6	1	2
3	5	0	4	0	1	6	4

(c) Hard

3	0	7	6	9	8	6	9
8	7	6	3	2	6	8	0
0	4	5	5	7	3	6	8
2	8	9	2	8	4	5	2
6	7	7	9	4	9	0	1
9	3	0	6	7	3	6	3
2	0	8	7	8	6	9	7
9	5	5	9	0	1	6	4

(d) Moderate

3	5	7	0	7	8	1	9
8	7	6	3	2	1	3	0
0	1	5	4	7	3	6	8
2	8	8	2	8	1	5	2
4	2	7	9	4	9	4	1
9	3	0	6	7	1	6	3
2	0	8	7	8	6	9	7
9	4	5	9	0	1	6	4

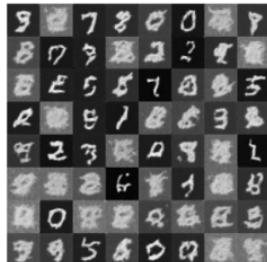
(e) Herding

3	0	7	0	7	8	3	8
8	7	6	3	2	6	3	0
0	4	5	0	7	8	6	8
2	5	8	6	8	1	5	2
4	2	7	9	4	9	9	1
9	3	0	6	7	3	6	3
2	0	8	7	8	6	7	7
9	5	5	9	0	2	6	4

(f) GM Matching

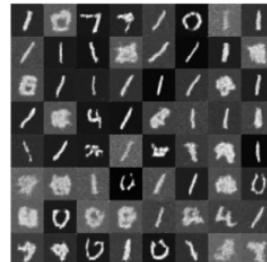
Figure 15: (No Corruption) Visualization of Generated Samples 40% sampling

Experiments



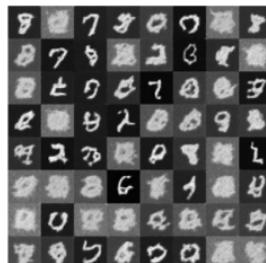
(a) Random

(b) Easy



(c) Hard

(d) Moderate



(e) Herding

(f) GM Matching

Figure 16: (30% Corruption) Visualization of Generated Samples 40% sampling

Appendix

- **Corruption method list**

1. Gaussian Noise: Adding random perturbations sampled from a standard normal distribution.
2. Random Occlusion: Mimics missing or occluded regions in images by replacing random patches with black or noisy pixels.
3. Resolution Reduction: Simulates low-quality images by applying aggressive down-sampling and up-sampling, introducing pixelation artifacts.
4. Fog: Emulates atmospheric distortions by overlaying a simulated fog effect.
5. Motion Blur: Models dynamic distortions caused by camera motion or moving objects during exposure.

- **Pruning method list**

1. Easy: This strategy selects samples that are closest to the centroid of the dataset. These "easy" samples are presumed to be representative of the core data distribution.
2. Hard: This approach selects samples that are farthest from the centroid.
3. Moderate: This strategy selects samples that are closest to the median distance from the centroid.
4. Kernel Herding: kernel herding employs a greedy algorithm to select samples that minimize the discrepancy between the empirical distribution and the target distribution.

References I

- Francis Bach, Simon Lacoste-Julien, and Guillaume Obozinski. *On the Equivalence between Herding and Conditional Gradient Algorithms*. 2012. arXiv: 1203.4523 [cs.LG]. URL: <https://arxiv.org/abs/1203.4523>.
- Stephen Boyd and Lieven Vandenberghe. *Convex Optimization*. Cambridge University Press, 2004.
- Yutian Chen, Max Welling, and Alex Smola. *Super-Samples from Kernel Herding*. 2012. arXiv: 1203.3472 [cs.LG]. URL: <https://arxiv.org/abs/1203.3472>.