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Anomaly 정의

• 데이터 X = (x1, x2, · · · , xn) ∼ P

• P0, P1: 정상 분포, 이상분포 ∼ p0, p1 density

• 이상치는 x가 P0 하에서,

x ∈ {x : p0(x) ≤ τα}, P0(p0(x) ≤ τα) = α

• α: threshold probability
• τα: threshold
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Problem

Unknown information

• P0, P1

Observed information

• Supervised: (X ,Y ), Y ∈ {0, 1} fully observed

• Semi-supervised: X ∼ P0

• Unsupervised: X ∼ (1 − ϵ)P0 + ϵP1

• ϵ ∈ (0, 1): Unknown proportion
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Overview

1 Density Estimation
• Density를 추정하고, low density이면 이상치로 판단
• Parametric, Nonparametric / Neighborhood, Likelihood 계산, 근사,

Density ratio

2 Non-Density Methods
• Density 대신 다른 신호로 이상치를 구분
• Reconstruction, One-class boundary, Tree, Self-supervised

3 방법론 외

• Likelihood 실패, Calibration, XAI 등
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Density-based Method

1 Parametric(U)
• DAGMM [1], COPOD [2], PaDiMi [3]

2 Nonparametric / Neighborhood(U)
• DBSCAN [4], 1998 Knorr & Ng [5], LOF [6],

3 Likelihood 계산 - Generative model(Semi)
• MADE [7], RealNVP [8], PixelCNN++i [9]

4 Likelihood 근사 - Generative model(Semi)
• VAE(2015 An & Cho [10]), DDPM

5 Typicality Failure: Likelihood가 outlier도 크게 나오는 현상
• Do Deep Generative Models Know What They Don’t Know? [11]

6 Density ratio(Semi)
• Likelihood Ratios for OOD [12], ANODE [13]
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Non-density Method

1 Reconstruction 기반(Semi)
• Autoencoder(ABAD [14], Robust Deep AE, MemAE [15], USAD

[16], DRAEM [17], RePen [18])
• GAN(AnoGAN [19], GANomaly [20]),

2 One-class boundary(Semi)
• One-Class SVM [21], Deep SVDD [22], Deep SAD [23], DevNet

[24]

3 Tree 기반(U)
• Isolation Forest [25], Robust Random Cut Forest [26]

4 Self-supervised(U)
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그 외 방법론

1 Calibration
• Conformal e-value [27], Robust Conformal OD [28], Conformal

Prediction with Cellwise Outliers [29], Conformal AD in Event
Sequences [30]

2 XAI
• AR-Pro [31], Dissect black box [32]
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최신 방법론의 흐름

1 Generalist AD
• ResAD [33], NaG [34]

2 Foundation Model
• FoMo-0D [35], AnoLLM [36],

3 그 외 도메인

• Graph [37], Time series [38], 3D [39], Online(Streaming
Transformer) [40], Video [41], Causal [42], Mamba AD [43]
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