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® OJO[E] X = (x1, %0, ,xp) ~ P
o Py, Pp: Jat X, O|4EI ~ pg, p1 density
o O|¢2|= x7t Py SOf| A,

x € {x:po(x) <71a}, Po(po(x) <7p) =«

® «: threshold probability
® 7, threshold



Problem

Unknown information
* Py, Pr

Observed information
® Supervised: (X, Y), Y € {0, 1} fully observed
® Semi-supervised: X ~ Py

® Unsupervised: X ~ (1 —¢€)Py + Py
® ¢ c(0,1): Unknown proportion



Overview

@ Density Estimation
® DensityS A5l low densityO|3 O|Atz|= THCH
® Parametric, Nonparametric / Neighborhood, Likelihood |4, A},
Density ratio
® Non-Density Methods
® Density L4l CHE 422 0|2 & &2
® Reconstruction, One-class boundary, Tree, Self-supervised
e YHE 2
e |ikelihood AT, Calibration, XAl S



Density-based Method

® Parametric(U)
e DAGMM [1], COPOD [2], PaDiM' [3]
® Nonparametric / Neighborhood(U)
e DBSCAN [4], 1998 Knorr & Ng [5], LOF [6],
© Likelihood A4t - Generative model(Semi)
® MADE [7], RealNVP [8], Pixel CNN++' [9]
@ Likelihood A} - Generative model(Semi)
e VAE(2015 An & Cho [10]), DDPM
@ Typicality Failure: Likelihood?}t outliere 3| LI = 34
® Do Deep Generative Models Know What They Don't Know? [11]
@ Density ratio(Semi)
¢ Likelihood Ratios for OOD [12], ANODE [13]



Non-density Method

@ Reconstruction 7|8H(Semi)
® Autoencoder(ABAD [14], Robust Deep AE, MemAE [15], USAD
[16], DRAEM [17], RePen [18])
* GAN(AnoGAN [19], GANomaly [20]),
® One-class boundary(Semi)
® One-Class SVM [21], Deep SVDD [22], Deep SAD [23], DevNet
[24]
© Tree 7|BHU)
® |solation Forest [25], Robust Random Cut Forest [26]
O Self-supervised(U)



® Calibration
® Conformal e-value [27], Robust Conformal OD [28], Conformal
Prediction with Cellwise Outliers [29], Conformal AD in Event
Sequences [30]
@ XAl
® AR-Pro [31], Dissect black box [32]



@ Generalist AD
® ResAD [33], NaG [34]
@® Foundation Model
® FoMo-0D [35], AnoLLM [36],
e 1 2| =gj¢l
® Graph [37], Time series [38], 3D [39], Online(Streaming
Transformer) [40], Video [41], Causal [42], Mamba AD [43]
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