
(Manifest AI)

Scaling Context Requires Rethinking Attention

[ICLR 2025 preprint]

Hankyo Jeong

December 18, 2025

Seoul National University

KV Cache

• Autoregressive inference at step t uses past {k1, . . . , kt} and
{v1, . . . , vt}.

• Recomputing past K ,V each step increases cost.

• Store past K ,V as KV cache.

KV-cache state for length T : state ∼ O(cT), for some contant c

1

Causal Self-Attention

• qi , ki ∈ Rd , vi ∈ Rv .

Q =

q
⊤
1
...

q⊤t

 ∈ Rt×d , K =

k
⊤
1
...

k⊤
t

 ∈ Rt×d , V =

v
⊤
1
...

v⊤
t

 ∈ Rt×v .

M ∈ Rt×t , Mij = 1i≥j .

attnexp(Q,K ,V) =
(
exp(QK⊤)⊙M

)
V .

• Compute t × t interactions ⇒ cost scales with t2.

• KV cache grows with t.

2

Two Limits of Long Context

• Exponential attention:

compute ∼ O(t2 · d), state ∼ O(t).

• Linear attention:

compute ∼ O(t), state ∼ O(1) (fixed feature size).

• Fixed-size state can limit performance at long context.

Goal: larger state capacity + GPU-parallel execution form.

3

Linear Attention

Linear Attention

• Feature map: ϕ : Rd → RD .

• Row-wise application:

ϕ(Q) =

ϕ(q1)
⊤

...

ϕ(qt)
⊤

 ∈ Rt×D and ϕ(K) ∈ Rt×D .

attnϕlin(Q,K ,V) =
(
ϕ(Q)ϕ(K)⊤ ⊙M

)
V .

4

Linear Attention: Recurrent Form and Linear Cost

• Index i denotes the i-th row (time step).

Si :=
i∑

j=1

vj ϕ(kj)
⊤ ∈ Rv×D .

attnϕlin(Q,K ,V)i =
i∑

j=1

ϕ(qi)
⊤ϕ(kj) vj =

 i∑
j=1

vj ϕ(kj)
⊤

ϕ(qi) = Si ϕ(qi). Si = Si−1+vi ϕ(ki)
⊤.

• viϕ(ki)
⊤ : O(vD), Siϕ(qi) : O(vD).

• Total: O(tDv).

5

State Size Limit in Linear Attention

• Linear attention replaces KV cache with Si ∈ Rv×D .

• State capacity depends on D.

• If D is fixed, state capacity stays fixed as t increases.

Problem: fixed D → fixed state capacity at long context.

6

Power Attention

Power Attention: from exp(QK⊤) to (QK⊤)⊙p

attnexp(Q,K ,V) =
(
exp(S)⊙M

)
V =

(
exp(QK⊤)⊙M

)
V ,

attnppow(Q,K ,V) =
(
S⊙p ⊙M

)
V =

(
(QK⊤)⊙p ⊙M

)
V .

A⊙p : elementwise p-th power.

7

Choose ϕ by Tensor Power (TPOW)

Lemma 1

Let p ∈ N. define TPOWp : Rd → Rdp

by

ϕ = TPOWp(x) =


x1 · · · x1
x1 · · · x2

...

xd · · · xd

 =

[∏
k

xik

]
(i1,...,ip)∈N×p

d

.

Then for any q, k ∈ Rd , TPOWp(q)
⊤TPOWp(k) = (q⊤k)p.

8

Power attention is linear attention (with ϕ = TPOWp)

• Linear attention with feature map ϕ : Rd → RD :

attnϕlin(Q,K ,V) :=
(
ϕ(Q)ϕ(K)⊤ ⊙M

)
V , ϕ(Q) =

ϕ(q1)
⊤

...

ϕ(qt)
⊤

 .

• With ϕ = TPOWp, Lemma1 gives, entrywise for all i , j :(
ϕ(Q)ϕ(K)⊤

)
ij
= ϕ(qi)

⊤ϕ(kj) = (q⊤i kj)
p =

(
(QK⊤)⊙p

)
ij
.

attnppow(Q,K ,V) =
(
(QK⊤)⊙p ⊙M

)
V

=
(
ϕ(Q)ϕ(K)⊤ ⊙M

)
V

= attnϕlin(Q,K ,V).

9

From TPOW to SPOW: permutation duplicates

• Example (p = 2, x = [a, b, c]⊤).

TPOW produces a symmetric tensor

TPOW2(x) =

aa ab ac

ab bb bc

ac bc cc


SPOW produces unique elements of that tensor

SPOW2(x) = [aa, ab, ac, bb, bc, cc]⊤.

10

SPOW

• scaled by a coefficient that depends on the permutation count.

SPOW2

([
x1
x2

])
=

 x1x1√
2 x1x2
x2x2

 , SPOW3

([
x1
x2

])
=


x1x1x1√
3 x1x1x2√
3 x1x2x2
x2x2x2

 .

Which gives:

1. For x , y ∈ Rd :

⟨SPOWp(x),SPOWp(y)⟩ = (x⊤y)p = ⟨TPOWp(x),TPOWp(y)⟩.

2. Dimension:

D =

(
d + p − 1

p

)
.

11

Recap: Power attention via ϕ

• Power attention:

attnppow(Q,K ,V) =
(
(QK⊤)⊙p ⊙M

)
V .

• If ϕ satisfies ϕ(q)⊤ϕ(k) = (q⊤k)p, then

attnppow(Q,K ,V) = attnϕlin(Q,K ,V).

ϕ = TPOWp ⇒ D = dp, ϕ = SPOWp ⇒ D =

(
d + p − 1

p

)
.

12

GPU Parallelism via Chunking

Chunking for GPU Execution

• Recurrent update: Si ← Si−1 creates a dependency chain.

• GPU throughput is tied to batched matmul kernels.

• Chunking rewrites computation into chunk-level operations.

• Let chunk size be c and chunk index be n.

• Use only boundary states: S0, Sc , S2c ,

13

Chunked Form

• Treat Q,K as feature-space inputs (after ϕ) to match the chunk

derivation.

Ync+m = SncQnc+m +
nc+m∑
j=nc+1

(
Q⊤

nc+mKj

)
Vj , m ∈ {1, . . . , c}.

Sc(n+1) = Scn + V(n)cK
⊤
(n)c .

• Cost: O(tDv + tcd).

14

Conclusion

• Exponential attention: compute scales with t2, KV-cache state

scales with t.

• Linear attention: recurrent state Si ∈ Rv×D , compute O(tDv).

• Chunking: rewrite recurrent computation into GPU matmul form,

cost O(tDv + tcd).

• Power attention: score (q⊤k)p with a feature map satisfying

ϕ(q)⊤ϕ(k) = (q⊤k)p.

• TPOW gives D = dp; SPOW gives D =
(
d+p−1

p

)
.

15

Thank you!

Appendix

Appendix A: Chunked Form Setup

• Chunk size c, chunk index i .

• Chunk matrices: Q(i)c ,K(i)c ,V(i)c .

• Boundary state: Sci .

Y(i)c = SciQ(i)c + V(i)c

(
Q(i)cK

⊤
(i)c ⊙M

)
, (1)

Sc(i+1) = Sci + V(i)cK
⊤
(i)c . (2)

Appendix A: Position-wise Expansion

Yi = Sc⌊i/c⌋Qi +
i∑

j=⌊i/c⌋c+1

(QiK
⊤
j)Vj (3)

=
(
Sc(⌊i/c⌋−1) + V(i)cK

⊤
(i)c

)
Qi +

i∑
j=⌊i/c⌋c+1

(QiK
⊤
j)Vj (4)

= Sc(⌊i/c⌋−1)Qi +

⌊i/c⌋c∑
j=⌊(i−1)/c⌋c+1

VjK
⊤
j Qi +

i∑
j=⌊i/c⌋c+1

(QiK
⊤
j)Vj (5)

= Sc(⌊i/c⌋−1)Qi +

⌊i/c⌋c∑
j=⌊(i−1)/c⌋c+1

(K⊤
j Qi)Vj +

i∑
j=⌊i/c⌋c+1

(QiK
⊤
j)Vj . (6)

Appendix A: Telescoping to Attention Form

Yi = Sc(⌊i/c⌋−1)Qi +

⌊i/c⌋c∑
j=⌊(i−1)/c⌋c+1

(QiK
⊤
j)Vj +

i∑
j=⌊i/c⌋c+1

(QiK
⊤
j)Vj (7)

= Sc(⌊i/c⌋−1)Qi +
i∑

j=⌊(i−1)/c⌋c+1

(QiK
⊤
j)Vj (8)

= · · · = S0Qi +
i∑

j=1

(QiK
⊤
j)Vj (9)

=
i∑

j=1

(QiK
⊤
j)Vj (if S0 = 0). (10)

Appendix B: Tensor Power Identity

TPOW(x , p) =

[
p∏

k=1

xik

]
(i1,...,ip)∈[d]p

(11)

TPOW(x , p)⊤TPOW(y , p) =
∑

(i1,...,ip)∈[d]p

xi1 · · · xip yi1 · · · yip (12)

=

∑
i1∈[d]

xi1yi1

∑
i2∈[d]

xi2yi2

 · · ·

∑
ip∈[d]

xipyip


(13)

= (x⊤y)p. (14)

• With ϕ = TPOW(·, p), (q⊤k)p = ϕ(q)⊤ϕ(k).

• Power attention fits linear attention with state expansion D = dp.

Appendix B.2: Symmetric power (SPOW) definition

Index SPOW by a multi-index α = (α1, . . . , αd) ∈ Nd
0 with |α| :=

∑d
i=1 αi = p.

SPOWp(x)α :=

√
p!

α1! · · ·αd !

d∏
i=1

xαi
i , α ∈ Nd

0 , |α| = p. (27)

• The number of such α is D =
(
d+p−1

p

)
.

• This removes permutation duplicates of ordered indices.

Appendix B.2: Inner product identity (multinomial theorem)

Let x , y ∈ Rd . Then

⟨SPOWp(x),SPOWp(y)⟩ =
∑
|α|=p

(√
p!

α!

d∏
i=1

xαi
i

)(√
p!

α!

d∏
i=1

yαi
i

)
(28)

=
∑
|α|=p

p!

α!

d∏
i=1

(xiyi)
αi (29)

=

(
d∑

i=1

xiyi

)p

(30)

= (x⊤y)p. (31)

Here α! := α1! · · ·αd !.

Appendix B.2: Conclusion

⟨SPOWp(x),SPOWp(y)⟩ = (x⊤y)p = ⟨TPOWp(x),TPOWp(y)⟩. (32)

• SPOWp can replace TPOWp in power attention.

• SPOWp reduces the feature dimension from dp to
(
d+p−1

p

)
.

	Linear Attention
	Power Attention
	GPU Parallelism via Chunking
	Appendix
	Appendix

