(Manifest Al)
Scaling Context Requires Rethinking Attention

[ICLR 2025 preprint]

Hankyo Jeong
December 18, 2025

Seoul National University

KV Cache

e Autoregressive inference at step t uses past {kg,...,k:} and

{V]_, 5009 Vt}-
e Recomputing past K, V each step increases cost.

e Store past K, V as KV cache.

KV-cache state for length T : state ~ O(cT), for some contant c

Causal Self-Attention

® (g;, ki € Rd, v; € RY.

af k' v
Q: ; ERth K: : ERth V: : ERtXV-
al ke v

M e RtXt, MU =]'iZJ"
atthep(Q, K, V) = (exp(QKT) © M) V.

e Compute t X t interactions = cost scales with t.

e KV cache grows with t.

Two Limits of Long Context

e Exponential attention:
compute ~ O(t? - d), state ~ O(t).
e Linear attention:
compute ~ O(t), state ~ O(1) (fixed feature size).

o Fixed-size state can limit performance at long context.

Goal: larger state capacity + GPU-parallel execution form.

Linear Attention

Linear Attention

e Feature map: ¢ : R — RP.
e Row-wise application:
o(q)"
H(Q) = : cR™P and ¢(K) € R™*P.

o)™

attn, (Q, K, V) = (6(Q)¢(K)" © M)V.

Linear Attention: Recurrent Form and Linear Cost

e Index i denotes the i-th row (time step).
i

SE= Z \/j(b(kj)T S RV¥P.

j=t

j=t j=t

attnf;, (@, K, V)i = Z¢(qi)T¢(kj) Vi = (Z Vj¢(kj)T) o(qi) = Si ¢(qi)-

e v;é(ki)" : O(vD), Sig(qi) : O(vD).

e Total: O(tDv).

State Size Limit in Linear Attention

e Linear attention replaces KV cache with S; € RV*P.
e State capacity depends on D.

e If D is fixed, state capacity stays fixed as t increases.

Problem: fixed D — fixed state capacity at long context.

Power Attention

Power Attention: from exp(QK") to (QKT)®

atthep(Q, K, V) = (exp(S) © M)V = (exp(QK ") ® M)V,

attn? (Q,K, V) = (S®P o M)V = ((QK")*P o M) V.

pow

AOP: elementwise p-th power.

Choose ¢ by Tensor Power (TPOW)

Let p € N. define TPOW, : RY — RY" by

Xl...Xl
Xl...X2
¢ = TPOW,(x) = , = le,-k]
: k (ilv"'v"P)EN;p
Xd...Xd

Then for any q, k € R?, TPOW,(q) " TPOW (k) = (g " k)*.

Power attention is linear attention (with ¢ = TPOW,)

e Linear attention with feature map ¢ : R — RP:

d(q1)"
attn, (Q, K, V) := (3(Q)¢(K) @ M)V, ¢(Q)=|
<Z5(Clt)T

e With ¢ = TPOW,, Lemmal gives, entrywise for all i, :

(@(Qo(K)"); = olar) " oK) = (a k)P = ((QKT)P) .

attn? (Q, K, V) = (RK)*P & M)V
= (8(Q)o(K)T © M)V
= attnf (Q, K, V).

] |

From TPOW to SPOW: permutation duplicates

e Example (p=2, x =[a, b,c]").
TPOW produces a symmetric tensor

aa ab ac
TPOW,(x) = |ab bb bc
ac bc cc

SPOW produces unique elements of that tensor

SPOW,(x) = [aa, ab, ac, bb, bc, cc] T.

10

SPOW

e scaled by a coefficient that depends on the permutation count.

X1 X1X1
X1X1
SPOW2 & = \/§X1X2 5 SPOW3 x =S \/§X1X1X2
X2 X2 \/§X1X2X2
X2 X2
X2 X2 X2
Which gives:

1. For x,y € RY:
(SPOW 5(x), SPOW,()) = (xTy)? = (TPOW,,(x), TPOW,(y)).
2. Dimension:
D — (d +p— 1>.
p

11

Recap: Power attention via ¢

e Power attention:

attnf . (Q, K, V) = ((QKT)*P o M) V.

e If ¢ satisfies ¢(q) " (k) = (q" k)P, then

attn?_ (Q, K, V) = attnhn(Q K, V).

pow

¢ = TPOW, = D = d”, ¢_SPOWP¢D_<d+p1>.

p

12

GPU Parallelism via Chunking

Chunking for GPU Execution

Recurrent update: S; < S;_1 creates a dependency chain.

GPU throughput is tied to batched matmul kernels.

Chunking rewrites computation into chunk-level operations.

Let chunk size be ¢ and chunk index be n.

Use only boundary states: Sp, Sc, Soc, - - - .

13

Chunked Form

e Treat Q, K as feature-space inputs (after ¢) to match the chunk

derivation.
nc+m
nc+m—5annc+m+ Z an+m) iy m e {1,...,C}.
Jj=nc+1

c*

Sc(n+1) = Sen + V(n)cK(I)

e Cost: O(tDv + tcd).

14

Conclusion

e Exponential attention: compute scales with t2, KV-cache state
scales with t.

e Linear attention: recurrent state S; € RV*P, compute O(tDv).

e Chunking: rewrite recurrent computation into GPU matmul form,
cost O(tDv + tcd).

e Power attention: score (q' k)P with a feature map satisfying

d(q) T ¢(k) = (q"k)P.

o TPOW gives D = d?; SPOW gives D = (4271,

15

Thank you!

Appendix

Appendix A: Chunked Form Setup

e Chunk size ¢, chunk index i.
e Chunk matrices: Q(i)c, K(i)es Vie-

e Boundary state: S.

Yine = S Qiye + Vine (QiyeKihe ©@ M), (1)
Se(ivr) = Sei + VineK(i)e- (2)

Appendix A: Position-wise Expansion

i

Yi=SiaQ+ Y. (QKNY (3)
=lfales
= (Se(lifes—1) + VineKiye) Qi + Z (QK")V, (4)
j=li/c]e+1
Li/cle i
= Sc(li/e)-1) @i + Z ViK' Qi + Z (QK;")V; (5)
J=li—1)/clcr j=lijelett
li/c]e i
= Sc(li/e)-1) @i + Z (K" @)V + Z (QK;")V;. (6)

j=L(i—1)/clc+1 Jj=li/c]c+1

Appendix A: Telescoping to Attention Form

Li/cle i
Yi=Sqi/e-nQ+ D (QKDHVi+ D QK'Y (7)
j:L(i—l)/cijrl j:[i/cijrl
= Sc(life)—1) Qi + Z (QKV; (8)
J=l6i=1)/cje+1
= =5Q+ Y (@K (9)
j=1

SSN@KDY (Fs=0) (10)

Appendix B: Tensor Power ldentity

TPOW(x, p) {H x,k} (11)

TPOW(x, p) ' TPOW(y, p) = Z Xiy +* Xip Yiy ** Yip (12)
(i1,--,ip) €[d]P

i1€[d] i €[d] ip€ld]

(13)
= (XTy)p. (14)

e With ¢ = TPOW(-, p), (¢7 k)? = ¢(q) T B(k).

e Power attention fits linear attention with state expansion D = d”.

Appendix B.2: Symmetric power (SPOW) definition

Index SPOW by a multi-index o = (au, .. ., aq) € N§ with |a| := 30, a; = p.

d

! o
SPOW(X)a := ozllpiacﬂ | I EaS a NG, o] = p. (27)
o Coi=1

d+p71))

e The number of such ais D = (A

e This removes permutation duplicates of ordered indices.

Appendix B.2: Inner product identity (multinomial theorem)

Let x,y € RY. Then

(SPOW,(x), SPOW,(y)) = > (@Hxﬁ) (Z—: yf"‘) (28)

la|=p
d
= 3 BTG (29)
laj=p " i=1
= <Z XiYi (30)
= Ty (31)

Here a! := ay!-- - aq4l.

Appendix B.2: Conclusion

(SPOW,(x), SPOW,(y)) = (x"y)” = (TPOW,(x), TPOW,(y)). (32)

e SPOW, can replace TPOW, in power attention.

e SPOW, reduces the feature dimension from d” to (‘”’;’1).

	Linear Attention
	Power Attention
	GPU Parallelism via Chunking
	Appendix
	Appendix

