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Few-shot classification

Meta-training stage Meta-testing stage

Sampled N classes

dn
A <

Base suppor! set Sb '

\ g
Base class data X, | | Y Novel support set S, i
(Many) I (Novel class data X, )
Base query set Q, :ondltmnedmndel
Support set conditioned model 1/(-|S)

MatchingNet RelationNet

s-.\ S 1 sw—l- Y

H Cradient |
Cosine Relation N 1

Figure 2: Meta-learning few-shot classification algorithms. The meta-learning classifier M(-|S)
is conditioned on the support set S. (Top) In the meta-train stage, the support set S, and the query
set Qy, are first sampled from random N classes, and then train the parameters in M(.|S;) to
minimize the N-way prediction loss LN—way- In the meta-testing stage, the adapted classifier
M(.|S,) can predict novel classes with the support set in the novel classes S,,. (Bottom) The design
of M(-|S) in different meta-learning algorithms.
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Few-shot classification

Algorithm 1 Training episode loss computation for prototypical networks. N is the number of
examples in the training set, K is the number of classes in the training set, No < K is the number
of classes per episode, N is the number of support examples per class, N is the number of query
examples per class. RANDOMSAMPLE(S, N) denotes a set of N elements chosen uniformly at
random from set S, without replacement.

Input: Training set D = {(x1,1),....(Xn,yn)}. where each y; € {L,..., K}. D} denotes the
subset of D containing all elements (x;,y;) such that y; = k.
Qutput: The loss .J for a randomly generated training episode.

V + RANDOMSAMPLE({1,..., K} Ne¢) > Select class indices for episode

forkin{1,....N¢} do
Sk + RANDOMSAMPLE(Dy, , Ng) &> Select support examples
Qr + RANDOMSAMPLE(Dy, \ Sk, Ng) © Select query examples
Cf ! Z folxi) > Compute prototype from support examples

! (%i,y:) €8k
end for
J 0 ©> Initialize loss

forkin{1,....N¢} do
for (x,y) in Q) do
1

J—J+ d(fa(x). i) + lngz exp(—d(fy(x),cx)) & Update loss
m

end for
end for




Few-shot in the boundary

® |t is known that in hyperbolic neural networks, embeddings are prone to
converge to the boundary of P¢- in practice, the effective radius reg.

Figure 1. Hyperbolic image embeddings in the Poincaré ball: ex-
pectation (left) versus reality (right). In high-dimensional hyper-
bolic space, the volume of a ball is concentrated near its surface
where the hyperbolic metric varies monotonically with the angle.
Thus, the hierarchy-revealing property of hyperbolic space is lost.



Hyperbolic prototypical learning

® Assume an image dataset Z with C semantic classes.

® |f M is a manifold and fy : Z — M is an image encoder parametrized by
0, a typical approach models the probability of z; € Z being of class ¢ as

_exp(—dm(we, f(z;;0)))
p(clzi) = Zk exp(fj\;M(wk’f(Z,';e))) )

where w. € M is the centroid of the c-th class.

® While classic networks use /3 as duq (related to a Bregman divergence),
Poincaré networks use the geodesic distance (4) instead.



Hyperbolic prototypical learning

® For simplicity, let x; = f(z;; 0) and reformulate the objective :

= dM(WC,X,') + |0g2 eidD(wk’x") (2)
k

X = arg min Z Li = (argminLy,...,arg minLz)
X ; X1 X|z|
That is, we optimize over x instead of 6.
® Then, the optimal state of x is obtained by

» pick C direntions in RY
» set the direction of each embedding to match that of its class x; = rw. for

a certain r >0
» the first term of L; is automatically zero and the second term goes to —co

as the embeddings approach the boundary (r — 1/+/—k).



High-dimensional hyperbolic space

Hyperbolic measure concentration

For large d, the volume of a hyperbolic ball is concentrated close to its
boundary.

® The proposition leads to the hypothesis : given the high dimensionality of
the Poincaré ball used in the hyperbolic few-shot literature, embeddings
should lie at, or close to, refr.

® QUESTION : The hyperbolicity of the learnt representation space????




The Euclidean vs hyperbolic disparity

® |n fact, a hyperbolic (d — 1)-sphere containing embeddings at re from the
2/ —k+2res
1/ —=k—res

® Plus, Euclidean metric b is not that different from the hyperbolic.

origin is isometric to an Euclidean (d — 1)-sphere of radius
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Fixed-radius Euclidean embeddings

® Based on the facts, the authors proposed a fixed-radius Euclidean
embeddings with the metric h o /1 — cos(a).

® Given the radius hyperparameter r = 1/\/; (k > 0 is a shperical
curvature) and the Euclidean backbone f(+; ), the embeddings fed to the
prototypical loss (1) are computed as

, f(x;0)
[1£(x; 0|2

® This Euclidean architecture is ahead of the hyperbolic few-shot SoTA in

most of the experiments conducted.



® Used a 4-layer ConvNet as backbone with variable output dimension equal
to d. These embeddings were then projected

» to the Poincaré ball through the exponential map at the origin
» through magnitude rescaling in the Euclidean case

® In the latter, the radius is a hyperparameter, similarly to the curvature in

the former.
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Experiments

d Test acc Tmin Tavg Tmax d Space Test acc Prnin Tavg Timax
78.95 £ 0.16 E - - (RZ,3) | 49.11+0.20 - - -
o7 TOATE017T 435 447 447 o7 | Plooos | 49.10£0.20 7.41
8230+ 0.15  8.07 959 S Plog | 49.60 +0.20 4.15
83.13+0.14 2236 2236 22.36 (54,05) | 50.24 +0.20 22.36
80.14 +0.16 - - - (RZ,£3) | 49.14%0.20 - - -
98 80.58 £ 0.16  4.33 447 447 o8 | Plogos | 49254020 877 993 1044
84514+0.14 989 999  9.99 T Pl | ATOTH£019 754 805 9.43
85.01+£0.14 2236 2236 22.36 (S%,65) | 50.36 £0.20 22.36 22.36 22.36
79.95£0.15 - - - (RY,£3) | 48.84+0.20 - - -
9 81.04£0.16 446 447 447 9o | Plogos | 4559£0.08 1412 1413 1413
84.60+0.14 990 999  9.99 Ploo | 4871£019 998 999  9.99
8518 +0.14 2236 22.36 22.36 (S%,65) | 50.97£0.19 22.36 22.36 22.36
78.83+£0.15 - - - (R4, £3) | 49.10 £0.20 - - -
210 81.06+0.16  4.47 447 447 910 Plooos | 49.19£0.19 1413 1413 1413
84.70£0.14 999 999  9.99 Ploor | 51.37+0.20 999 999  9.99
85.37+0.14 2236 2236 22.36 (S%65) | 51362020 22.36 22.36 22.36
Table 2. CUB_200.2011 5-shot 5-way test results, 95% confi- Table 3. MinilmageNet 1-shot 5-way test results, 95% confi-
dence intervals and embedding radii. dence intervals and embedding radii.
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Appendix




Hyperbolic Space

® Hyperboloid model

HY = {x € R¥|(x,x), = %,Xdﬂ > 0}, with curvature k < 0

d
(X, %) 1= ZX:')’:' — xar1yar1, RPi={x=(x,...,xs1) € RY x R}

i=1

® Poincaré Model

1
Bl ={xeR: x| < —h k<0
® Poincaré ball can be derived from the hyperboloid model as follows.
n:H — P

) = (1+\/X*17Xd+17m71+\/xjikxd+1> )
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Hyperbolic Space
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Figure 2. Minkowski ambient space R%*, hyperboloid H{, stere-
ographic projection IT and Poincaré ball model P
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Hyperbolic Space

® The inverse projection of (3), M~ : P¢ — H{ takes the form

N~ (u) = (A(U)"v \/%7()‘(") - 1)>

Au) =2/ (14 kljull)

® The Poincaré exponential map at the origin

Expo(v) = tanh (\/—7“\,”2) m

projects a tangent vector back to the ball.

Note that since Poincaré ball is open, the tangent space at each point is simply
isomorphic to R?. On the other hand, hyperboloid has an explicit form of a

tangent space at each point.
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Hyperbolic Space

® Poincaré geodesic distance between any x and y € P{ is given by

dpg(x7 y) = \/2_7 arctanh(v—k|| — x @ y||2) (4)

(1 —2k(x,y) — Kllyll3)x + (1 + k||x|2)y
1—2k(x,y) + K*|Ix2ll¥l13

where x &y =

® Poincaré image encoder

Given an Euclidean backbone f with parameters 6, the hyperbolic image

encoders embeds an image x as follows:

h(x; 0) = Expg(f(x; 0))
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