Hyperbolic vs Euclidean Embeddings in Few-Shot Learning: Two Sides of the Same Coin (WACV 2024)

presented by Choeun Kim September 7, 2025

Seoul National University

Figure 2: Meta-learning few-shot classification algorithms. The meta-learning classifier $M(\cdot|S)$ is conditioned on the support set S. (Top) In the meta-train stage, the support set S_b and the query set Q_b are first sampled from random N classes, and then train the parameters in $M(\cdot|S_b)$ to minimize the N-way prediction loss L_{N-way} . In the meta-testing stage, the adapted classifier $M(\cdot|S_b)$ can predict novel classes with the support set in the novel classes S_n . (Bottom) The design of $M(\cdot|S)$ in different meta-learning algorithms.

Few-shot classification

Algorithm 1 Training episode loss computation for prototypical networks. N is the number of examples in the training set, K is the number of classes in the training set, $N_C \leq K$ is the number of classes per episode, N_S is the number of support examples per class, N_Q is the number of query examples per class. RandomSample(S,N) denotes a set of N elements chosen uniformly at random from set S, without replacement.

```
Input: Training set \mathcal{D} = \{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_N, y_N)\}, where each y_i \in \{1, \dots, K\}. \mathcal{D}_k denotes the
   subset of \mathcal{D} containing all elements (\mathbf{x}_i, y_i) such that y_i = k.
Output: The loss J for a randomly generated training episode.
    V \leftarrow \text{RANDOMSAMPLE}(\{1, \dots, K\}, N_C)
                                                                                              for k in \{1, ..., N_C\} do
       S_k \leftarrow \text{RANDOMSAMPLE}(\mathcal{D}_{V_k}, N_S)

Q_k \leftarrow \text{RANDOMSAMPLE}(\mathcal{D}_{V_k} \setminus S_k, N_O)
                                                                                                        Select support examples

⊳ Select query examples

      \mathbf{c}_k \leftarrow \frac{1}{N_C} \sum f_{\phi}(\mathbf{x}_i)
                                                                             > Compute prototype from support examples
   end for
   J \leftarrow 0
                                                                                                                       ▶ Initialize loss
   for k in \{1, \ldots, N_C\} do
       for (\mathbf{x}, y) in Q_k do
          J \leftarrow J + \frac{1}{N_C N_O} \left[ d(f_{\phi}(\mathbf{x}), \mathbf{c}_k)) + \log \sum_{i} \exp(-d(f_{\phi}(\mathbf{x}), \mathbf{c}_k)) \right]

    □ Update loss

       end for
   end for
```

Few-shot in the boundary

• It is known that in hyperbolic neural networks, embeddings are prone to converge to the boundary of P_k^d - in practice, the effective radius $r_{\rm eff}$.

Figure 1. Hyperbolic image embeddings in the Poincaré ball: expectation (left) versus reality (right). In high-dimensional hyperbolic space, the volume of a ball is concentrated near its surface where the hyperbolic metric varies monotonically with the angle. Thus, the hierarchy-revealing property of hyperbolic space is lost.

4

Hyperbolic prototypical learning

- Assume an image dataset \mathcal{I} with \mathcal{C} semantic classes.
- If \mathcal{M} is a manifold and $f_{\theta}: \mathcal{I} \to \mathcal{M}$ is an image encoder parametrized by θ , a typical approach models the probability of $\mathbf{z}_i \in \mathcal{I}$ being of class c as

$$p(c|\mathbf{z}_i) = \frac{\exp(-d_{\mathcal{M}}(\mathbf{w}_c, f(\mathbf{z}_i; \theta)))}{\sum_k \exp(-d_{\mathcal{M}}(\mathbf{w}_k, f(\mathbf{z}_i; \theta)))}$$
(1)

where $\mathbf{w}_c \in \mathcal{M}$ is the centroid of the *c*-th class.

• While classic networks use l_2^2 as $d_{\mathcal{M}}$ (related to a Bregman divergence), Poincaré networks use the geodesic distance (4) instead.

Hyperbolic prototypical learning

• For simplicity, let $\mathbf{x}_i = f(\mathbf{z}_i; \theta)$ and reformulate the objective :

$$L_{i} := d_{\mathcal{M}}(\mathbf{w}_{c}, \mathbf{x}_{i}) + \log \sum_{k} e^{-d_{\mathcal{D}}(\mathbf{w}_{k}, \mathbf{x}_{i})}$$

$$\mathbf{x} = \arg \min_{\mathbf{x}} \sum_{i} L_{i} = (\arg \min_{\mathbf{x}_{1}} L_{1}, \dots, \arg \min_{\mathbf{x}_{|\mathcal{I}|}} L_{|\mathcal{I}|})$$
(2)

That is, we optimize over \mathbf{x} instead of θ .

- Then, the optimal state of x is obtained by
 - ightharpoonup pick C direntions in \mathbb{R}^d
 - ▶ set the direction of each embedding to match that of its class $x_i = r\mathbf{w}_c$ for a certain r > 0
 - ▶ the first term of L_i is automatically zero and the second term goes to $-\infty$ as the embeddings approach the boundary $(r \to 1/\sqrt{-k})$.

High-dimensional hyperbolic space

Hyperbolic measure concentration

For large d, the volume of a hyperbolic ball is concentrated close to its boundary.

- The proposition leads to the hypothesis: given the high dimensionality of the Poincaré ball used in the hyperbolic few-shot literature, embeddings should lie at, or close to, r_{eff}.
- QUESTION : The hyperbolicity of the learnt representation space????

The Euclidean vs hyperbolic disparity

- In fact, a hyperbolic (d-1)-sphere containing embeddings at r_{eff} from the origin is isometric to an Euclidean (d-1)-sphere of radius $\frac{2/\sqrt{-k}+2r_{\text{eff}}}{1/\sqrt{-k}-r_{\text{eff}}}$.
- Plus, Euclidean metric l_2 is not that different from the hyperbolic.

Fixed-radius Euclidean embeddings

- Based on the facts, the authors proposed a fixed-radius Euclidean embeddings with the metric $l_2 \propto \sqrt{1 \cos(\alpha)}$.
- Given the radius hyperparameter $r=1/\sqrt{k}$ (k>0 is a shperical curvature) and the Euclidean backbone $f(\cdot;\theta)$, the embeddings fed to the prototypical loss (1) are computed as

$$r\frac{f(\mathbf{x};\theta)}{\|f(\mathbf{x};\theta)\|_2}$$

 This Euclidean architecture is ahead of the hyperbolic few-shot SoTA in most of the experiments conducted.

Experiments

- Used a 4-layer ConvNet as backbone with variable output dimension equal to d. These embeddings were then projected
 - ▶ to the Poincaré ball through the exponential map at the origin
 - through magnitude rescaling in the Euclidean case
- In the latter, the radius is a hyperparameter, similarly to the curvature in the former.

Experiments

_					
d	Space	Test acc	r_{\min}	r_{avg}	$r_{\rm max}$
27	$(\mathbb{R}^{d}, \ell_{2}^{2})$	78.95 ± 0.16	-	-	-
	$P_{-0.05}^d$	79.17 ± 0.17	4.35	4.47	4.47
	$P_{-0.01}^d$	82.30 ± 0.15	8.07	9.59	9.87
	(S^d, ℓ_2)	83.13 ± 0.14	22.36	22.36	22.36
28	(\mathbb{R}^d, ℓ_2^2)	80.14 ± 0.16	-	-	-
	$P_{-0.05}^d$	80.58 ± 0.16	4.33	4.47	4.47
	$P_{-0.01}^d$	84.51 ± 0.14	9.89	9.99	9.99
	(S^d, ℓ_2)	85.01 ± 0.14	22.36	22.36	22.36
2 ⁹	$(\mathbb{R}^{d}, \ell_{2}^{2})$	79.95 ± 0.15	-	-	-
	$P_{-0.05}^d$	81.04 ± 0.16	4.46	4.47	4.47
	$P_{-0.01}^d$	84.60 ± 0.14	9.90	9.99	9.99
	(S^d, ℓ_2)	85.18 ± 0.14	22.36	22.36	22.36
210	$(\mathbb{R}^{d}, \ell_{2}^{2})$	78.83 ± 0.15	-	-	-
	$P_{-0.05}^d$	81.06 ± 0.16	4.47	4.47	4.47
	$P_{-0.01}^{d}$	84.70 ± 0.14	9.99	9.99	9.99
	(S^d, ℓ_2)	85.37 ± 0.14	22.36	22.36	22.36

Table 2. CUB.200.2011 5-shot 5-way test results, 95% confidence intervals and embedding radii.

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	d	Space	Test acc	r_{\min}	$r_{\rm avg}$	$r_{\rm max}$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	27	$(\mathbb{R}^{d}, \ell_{2}^{2})$	49.11 ± 0.20	-	-	-
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		$P_{-0.005}^d$		3.78	5.85	7.41
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		$P_{-0.01}^{a}$	49.60 ± 0.20	2.78	3.53	4.15
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		(S^d, ℓ_2)	50.24 ± 0.20	22.36	22.36	22.36
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	28		49.14 ± 0.20	-	-	-
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		$P_{-0.005}^d$	49.25 ± 0.20	8.77	9.93	10.44
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		$P_{-0.01}^{u}$	47.07 ± 0.19	7.54	8.05	9.43
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		(S^d, ℓ_2)	50.36 ± 0.20	22.36	22.36	22.36
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	29		48.84 ± 0.20	-	-	-
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		$P_{-0.005}^d$	45.59 ± 0.18	14.12	14.13	14.13
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		$P_{-0.01}^d$	48.71 ± 0.19	9.98	9.99	9.99
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		(S^d, ℓ_2)	50.97 ± 0.19	22.36	22.36	22.36
$P_{-0.01}^{a}$ 51.37 ± 0.20 9.99 9.99 9.99	210	(\mathbb{R}^d, ℓ_2^2)	49.10 ± 0.20	-	-	-
$P_{-0.01}^{a}$ 51.37 ± 0.20 9.99 9.99 9.99		$P_{-0.005}^d$	49.19 ± 0.19	14.13	14.13	14.13
1 (7/4 4) 1 = 1 00 1 0 00 00 00 00 00 00 00		$P_{-0.01}^{a}$	51.37 ± 0.20	9.99	9.99	9.99
(S^{α}, ℓ_2) 51.36 ± 0.20 22.36 22.36 22.3		(S^d, ℓ_2)	51.36 ± 0.20	22.36	22.36	22.36

Table 3. MiniImageNet 1-shot 5-way test results, 95% confidence intervals and embedding radii.

Appendix

Hyperboloid model

$$H_k^d := \{\mathbf{x} \in \mathbb{R}^{d,1} | \langle \mathbf{x}, \mathbf{x} \rangle_L = \frac{1}{k}, x_{d+1} > 0\}, \text{ with curvature } k < 0\}$$

$$\langle \mathbf{x}, \mathbf{x} \rangle_L := \sum_{i=1}^d x_i y_i - x_{d+1} y_{d+1}, \quad \mathbb{R}^{d,1} := \{ \mathbf{x} = (x_1, \dots, x_{d+1}) \in \mathbb{R}^d \times \mathbb{R} \}$$

Poincaré Model

$$B_k^d = \{ x \in \mathbb{R}^d : ||\mathbf{x}||_2^2 < -\frac{1}{k} \}, \ k < 0$$

• Poincaré ball can be derived from the hyperboloid model as follows.

$$\Pi: H_k^d \to P_k^d$$

$$\Pi(\mathbf{x}) := \left(\frac{x_1}{1 + \sqrt{-k}x_{d+1}}, \dots, \frac{x_d}{1 + \sqrt{-k}x_{d+1}}\right)$$
(3)

Figure 2. Minkowski ambient space $\mathbb{R}^{d,1}$, hyperboloid H_k^d , stereographic projection Π and Poincaré ball model P_k^d .

• The inverse projection of (3), $\Pi^{-1}: P_k^d \to H_k^d$ takes the form

$$\Pi^{-1}(\mathbf{u}) = \left(\lambda(\mathbf{u})\mathbf{u}, \frac{1}{\sqrt{-k}}(\lambda(\mathbf{u}) - 1)\right)$$
$$\lambda(\mathbf{u}) = 2/\left(1 + k\|\mathbf{u}\|_{2}^{2}\right)$$

• The Poincaré exponential map at the origin

$$\mathsf{Exp}_{\mathbf{0}}(\mathbf{v}) = \mathsf{tanh}\left(\sqrt{-k}\|\mathbf{v}\|_{2}\right) \frac{\mathbf{v}}{\sqrt{-k}\|\mathbf{v}\|_{2}}$$

projects a tangent vector back to the ball.

Note that since Poincaré ball is open, the tangent space at each point is simply isomorphic to \mathbb{R}^d . On the other hand, hyperboloid has an explicit form of a tangent space at each point.

• Poincaré geodesic distance between any \mathbf{x} and $\mathbf{y} \in P_k^d$ is given by

$$d_{P_k^d}(\mathbf{x}, \mathbf{y}) := \frac{2}{\sqrt{-k}} \operatorname{arctanh}(\sqrt{-k} \| -\mathbf{x} \oplus \mathbf{y} \|_2)$$
where $\mathbf{x} \oplus \mathbf{y} = \frac{(1 - 2k\langle \mathbf{x}, \mathbf{y} \rangle - k \|\mathbf{y}\|_2^2)\mathbf{x} + (1 + k \|\mathbf{x}\|_2^2)\mathbf{y}}{1 - 2k\langle \mathbf{x}, \mathbf{y} \rangle + k^2 \|\mathbf{x}\|_2^2 \|\mathbf{y}\|_2^2}$

$$(4)$$

• Poincaré image encoder

Given an Euclidean backbone f with parameters θ , the hyperbolic image encoders embeds an image ${\bf x}$ as follows:

$$h(\mathbf{x};\theta) = \mathsf{Exp}_0^P(f(\mathbf{x};\theta))$$