
Denoising Diffusion Probabilistic Models

Jonathan Ho and Ajay Jain and Pieter Abbeel

NeurIPS 2020

Department of Statistics, Seoul National University

Presented by Sangmoon Han

2025-09-04

1 / 12

Overview

• Let T ∈ N.

• Denoising Diffusion Probabilistic Models(DDPM) are generative models having

two steps.

1. Define a process which converts image data x0 to standard gaussian data

xT .

2. Define a reverse process to learn a finite-time reversal of this process.

2 / 12

Forward Process

• Let x0 denote a data distributed according to some unknown distribution q (x0)

• For x0:T , DDPM considers the joint distribution q(x0:T) by fixed β1, . . . , βT as

q(x0:T) = q(x0)
T∏
t=1

q(xt |xt−1), q(xt |xt−1) := N (xt ;
√

1− βtxt−1, βt I)

• That means q(x0:T) is considered as a Markov chain that gradually adds

Gaussian noise.

xt |xt−1
d
=

√
1− βtxt−1 +

√
βtϵ, ϵ ∼ N (0, I)

3 / 12

Forward Process

• Properties of the forward process of DDPM :

1. Let αt := 1− βt and ᾱt :=
∏t

s=1 αs , then

xt |x0 ∼ q(xt |x0) = N (xt ;
√
ᾱtx0, (1− ᾱt)I)

xt |x0
d
=
√
ᾱtx0 +

√
1− ᾱtϵ, ϵ ∼ N (0, I)

2. If 0 < βt < 1, for all t = 1, · · · ,T , then ᾱt → 0 as T →∞ and

q(xT |x0) ≈ N (xT ; 0, I) as T →∞

• First property means if one wishes to sample xt , it can be drawn directly from

q(xt |x0) rather than using the full forward process q(x1:t |x0).

• Second property means the sample xT generated by q(x0:T) can be viewed as

the sample generated from N (0, I) for sufficient large T .

4 / 12

Diffusion models

• Although the forward process q(xt |xt−1) is Markov chain, the time-reversed

sequence yt := xT−t is not guaranteed to be Markov under q, hence directly

sampling backward from xT to x0 is generally intractable.

• From the perspective of variational inference, Diffusion models consider

pθ(x0:T) called the reverse process as the approximate distribution of q(x0:T).

• DDPM considers pθ(x0:T) is defined as a Markov chain with Gaussian

transitions starting at p(xT) = N (xT ; 0, I) :

pθ(x0:T) := p(xT)
T∏
t=1

pθ(xt−1|xt), pθ(xt−1|xt) := N (xt−1;µθ(xt , t), σ
2
t I)

, where σ2
t are hyperparameters, θ are learnable parameters.

5 / 12

Objective function

• Training is performed by minimizing the KL divergence between these two:1

DKL (q(x0:T)∥pθ(x0:T)) = −Eq(x0:T) [log pθ (x0:T)] + C1

= Eq(x0,x1,··· ,xT)

[
− log p (xT)−

T∑
t=1

log
pθ (xt−1|xt)
q (xt |xt−1)

]
︸ ︷︷ ︸

:=L

+C2

≥E [− log pθ (x0)] + C3, where pθ(x0) :=

∫
pθ(x0:T)dx1:T .

• Furthermore, L can be rewritten as :

L = Eq

DKL (q (xT |x0) ∥p (xT))︸ ︷︷ ︸
LT

+
∑
t>1

DKL (q (xt−1|xt , x0) ∥pθ (xt−1|xt))︸ ︷︷ ︸
Lt−1

− log pθ (x0|x1)︸ ︷︷ ︸
L0


• LT does not include parameters and is therefore treated as a constant.

• Since x0 is a discrete random vector taking values in {0, . . . , 255},
L0 = − log pθ (x0|x1) is approximated by a discrete probability density, but details are

skiped here.

1In DDPM, ”Training is performed by optimizing the usual variational bound on negative

log likelihood”
6 / 12

Focusing on second term of L

• If q(x) = N
(
x |µ1, σ

2
1 I
)
, p(x) = N

(
x |µ2, σ

2
2 I
)
,

DKL(q∥p) ∝
d

2
log

(
σ2
2

σ2
1

)
+

d
(
σ2
1 − σ2

2

)
+ ∥µ1 − µ2∥2

2σ2
2

• q (xt−1|xt , x0) can be computed as

q (xt−1|xt , x0) = N
(
xt−1; µ̃t(xt , x0), β̃t I

)
, where µ̃t (xt , x0) =

√
ᾱt−1βt

1−ᾱt
x0 +

√
αt(1−ᾱt−1)

1−ᾱt
xt and β̃t =

1−ᾱt−1

1−ᾱt
βt

• pθ (xt−1|xt) = N
(
xt−1;µθ (xt , t) , σ

2
t I
)
.

• For t ∈ {2, · · · ,T}, Lt−1 can be rewritten as :

Lt−1 = Eq

[
1

2σ2
t

∥µ̃t (xt , x0)− µθ (xt , t)∥
2

]
+ C

7 / 12

Focusing on second term of L

• Reparameterize xt , x0 from q(xT |x0) = N (xT ;
√
ᾱT x0, (1− ᾱT)I).

1. xt → xt (x0, ϵ) =
√
ᾱtx0 +

√
1− ᾱtϵ for ϵ ∼ N (0, I)

2. x0 =
1√
ᾱt

(
xt (x0, ϵ)−

√
1− ᾱtϵ

)
• Since µ̃t (xt , x0) =

√
ᾱt−1βt

1−ᾱt
x0 +

√
αt(1−ᾱt−1)

1−ᾱt
xt ,

µ̃t (xt , ϵ) =
1√
αt

(
xt −

βt√
1− ᾱt

ϵ

)
• ∥µ̃t (xt , x0)− µθ (xt , t) ∥2 can be rewritten by reparameterization

Lt−1 − C = Eq

[
1

2σ2
t

∥µ̃t (xt , x0)− µθ (xt , t)∥
2

]
= Ex0,ϵ

[
1

2σ2
t

∥∥∥∥ 1√
αt

(
xt −

βt√
1− ᾱt

ϵ

)
− µθ (xt (x0, ϵ) , t)

∥∥∥∥2
]

8 / 12

Reparametrization of µθ (xt , t)

• Recall, µ̃t (xt , ϵ) =
1√
αt

(
xt − βt√

1−ᾱt
ϵ
)
.

• Since xt is available as input to the model, we may choose the parametrization :

µθ (xt , t) = µ̃t

(
xt ,

1√
ᾱt

(
xt −

√
1− ᾱtϵθ (xt)

))
=

1√
αt

(
xt −

βt√
1− ᾱt

ϵθ (xt , t)

)
• Lt−1 can be expressed as

Lt−1 = Ex0,ϵ

[
β2
t

2σ2
tαt (1− ᾱt)

∥ϵ− ϵθ (xt , t)∥2
]
← xt =

√
ᾱtx0 +

√
1− ᾱtϵ

= Ex0,ϵ

[
β2
t

2σ2
tαt (1− ᾱt)

∥∥ϵ− ϵθ
(√

ᾱtx0 +
√
1− ᾱtϵ, t

)∥∥2
]

• Finally, L can be expressed as

L = Eq

[
LT +

∑
t>1

β2
t

2σ2
tαt (1− ᾱt)

∥∥ϵ− ϵθ
(√

ᾱtx0 +
√
1− ᾱtϵ, t

)∥∥2
+ L0

]

9 / 12

Algorithm

• Authors say we found it beneficial to sample quality (and simpler to

implement) to train on the following variant of the variational bound.

1. Lt−1 = Ex0,ϵ

[∥∥ϵ− ϵθ
(√

ᾱtx0 +
√
1− ᾱtϵ, t

)∥∥2
]
,

2. xt−1
d
= µθ (xt , t) + σtz , z ∼ N (0, I) ,

3. µθ (xt , t) =
1√
αt

(
xt −

1− αt√
1− ᾱt

ϵθ (xt , t)

)

Figure 1: Unconditional CIFAR10 progressive generation.

10 / 12

Experiments

Figure 2: This table shows Inception scores(IS), FID scores, and negative log

likelihoods(NLL) (lossless codelengths) on CIFAR10.

• Experiment setting

1. Set T = 1000.

2. Set the forward process variances to constants increasing linearly from

β1 = 10−1 to βT = 0.02.

3. To represent the reverse process, DDPM use a [1, U-Net] backbone

similar to an unmasked [2, PixelCNN++].

11 / 12

References I

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-Net:

Convolutional Networks for Biomedical Image Segmentation. 2015. arXiv:

1505.04597 [cs.CV]. url: https://arxiv.org/abs/1505.04597.

Tim Salimans et al. PixelCNN++: Improving the PixelCNN with

Discretized Logistic Mixture Likelihood and Other Modifications. 2017.

arXiv: 1701.05517 [cs.LG]. url:

https://arxiv.org/abs/1701.05517.

12 / 12

https://arxiv.org/abs/1505.04597
https://arxiv.org/abs/1505.04597
https://arxiv.org/abs/1701.05517
https://arxiv.org/abs/1701.05517

	Diffusion model

