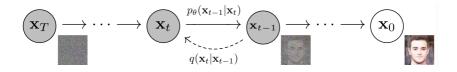
Denoising Diffusion Probabilistic Models

Jonathan Ho and Ajay Jain and Pieter Abbeel NeurIPS 2020

Department of Statistics, Seoul National University
Presented by Sangmoon Han

2025-09-04

Overview



- Let $T \in \mathbb{N}$.
- Denoising Diffusion Probabilistic Models(DDPM) are generative models having two steps.
 - 1. Define a process which converts image data x_0 to standard gaussian data x_T .
 - 2. Define a reverse process to learn a finite-time reversal of this process.

Forward Process

- Let x_0 denote a data distributed according to some unknown distribution $q(x_0)$
- For $x_{0:T}$, DDPM considers the joint distribution $q(x_{0:T})$ by fixed β_1, \ldots, β_T as

$$q(x_{0:T}) = q(x_0) \prod_{t=1}^{T} q(x_t|x_{t-1}), \quad q(x_t|x_{t-1}) := \mathcal{N}(x_t; \sqrt{1-\beta_t}x_{t-1}, \beta_t \mathbf{I})$$

 That means q(x_{0:T}) is considered as a Markov chain that gradually adds Gaussian noise.

$$x_t | x_{t-1} \stackrel{d}{=} \sqrt{1 - \beta_t} x_{t-1} + \sqrt{\beta_t} \epsilon, \quad \epsilon \sim \mathcal{N}(0, \mathbf{I})$$

Forward Process

- Properties of the forward process of DDPM :
 - 1. Let $\alpha_t := 1 \beta_t$ and $\bar{\alpha}_t := \prod_{s=1}^t \alpha_s$, then $x_t | x_0 \sim q(x_t | x_0) = \mathcal{N}(x_t; \sqrt{\bar{\alpha}_t} x_0, (1 \bar{\alpha}_t) \mathbf{I})$ $x_t | x_0 \overset{d}{=} \sqrt{\bar{\alpha}_t} x_0 + \sqrt{1 \bar{\alpha}_t} \epsilon, \quad \epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$
 - 2. If $0<\beta_t<1$, for all $t=1,\cdots,T$, then $\bar{\alpha}_t\to 0$ as $T\to\infty$ and

$$q(x_T|x_0) \approx \mathcal{N}(x_T; 0, \mathbf{I})$$
 as $T \to \infty$

- First property means if one wishes to sample x_t , it can be drawn directly from $q(x_t|x_0)$ rather than using the full forward process $q(x_{1:t}|x_0)$.
- Second property means the sample x_T generated by $q(x_{0:T})$ can be viewed as the sample generated from $\mathcal{N}(0, \mathbf{I})$ for sufficient large T.

Diffusion models

- Although the forward process $q(x_t|x_{t-1})$ is Markov chain, the time-reversed sequence $y_t := x_{T-t}$ is not guaranteed to be Markov under q, hence directly sampling backward from x_T to x_0 is generally intractable.
- From the perspective of variational inference, Diffusion models consider $p_{\theta}(x_{0:T})$ called the reverse process as the approximate distribution of $q(x_{0:T})$.
- DDPM considers $p_{\theta}(x_{0:T})$ is defined as a Markov chain with Gaussian transitions starting at $p(x_T) = \mathcal{N}(x_T; \mathbf{0}, \mathbf{I})$:

$$p_{ heta}(x_{0:T}) := p(x_T) \prod_{t=1}^T p_{ heta}(x_{t-1}|x_t), \quad p_{ heta}(x_{t-1}|x_t) := \mathcal{N}(x_{t-1}; oldsymbol{\mu}_{ heta}(x_t, t), \sigma_t^2 oldsymbol{\mathfrak{l}})$$

, where σ_t^2 are hyperparameters, θ are learnable parameters.

Objective function

ullet Training is performed by minimizing the KL divergence between these two: 1

$$\begin{split} D_{\mathrm{KL}}\left(q(x_{0:T}) \| p_{\theta}(x_{0:T})\right) &= -\mathbb{E}_{q(x_{0:T})}\left[\log p_{\theta}\left(x_{0:T}\right)\right] + C_{1} \\ &= \underbrace{\mathbb{E}_{q(x_{0},x_{1},\cdots,x_{T})}\left[-\log p\left(x_{T}\right) - \sum_{t=1}^{T}\log \frac{p_{\theta}\left(x_{t-1}|x_{t}\right)}{q\left(x_{t}|x_{t-1}\right)}\right]}_{:=L} + C_{2} \\ &\geq &\mathbb{E}\left[-\log p_{\theta}\left(x_{0}\right)\right] + C_{3}, \text{ where } p_{\theta}(x_{0}) := \int p_{\theta}(x_{0:T}) dx_{1:T}. \end{split}$$

Furthermore, L can be rewritten as :

$$L = \mathbb{E}_{q} \left[\underbrace{D_{\mathrm{KL}} \left(q \left(x_{T} | x_{0} \right) \| p \left(x_{T} \right) \right)}_{L_{T}} + \sum_{t>1} \underbrace{D_{\mathrm{KL}} \left(q \left(x_{t-1} | x_{t}, x_{0} \right) \| p_{\theta} \left(x_{t-1} | x_{t} \right) \right)}_{L_{t-1}} \underbrace{-\log p_{\theta} \left(x_{0} | x_{1} \right)}_{L_{0}} \right]$$

- L_T does not include parameters and is therefore treated as a constant.
- Since x_0 is a discrete random vector taking values in $\{0,\ldots,255\}$, $L_0=-\log p_\theta\left(x_0|x_1\right)$ is approximated by a discrete probability density, but details are skiped here.

 $^{^1}$ In DDPM, "Training is performed by optimizing the usual variational bound on negative log likelihood"

Focusing on second term of L

• If $q(x) = \mathcal{N}(x|\mu_1, \sigma_1^2 I)$, $p(x) = \mathcal{N}(x|\mu_2, \sigma_2^2 I)$,

$$D_{ extit{KL}}(q\|p) \propto rac{d}{2} \log \left(rac{\sigma_2^2}{\sigma_1^2}
ight) + rac{d \left(\sigma_1^2 - \sigma_2^2
ight) + \left\|\mu_1 - \mu_2
ight\|^2}{2\sigma_2^2}$$

• $q(x_{t-1}|x_t,x_0)$ can be computed as

$$q\left(x_{t-1}|x_t,x_0\right) = \mathcal{N}\left(x_{t-1}; \tilde{\boldsymbol{\mu}}_t(x_t,x_0), \tilde{\beta}_t \mathbf{I}\right)$$

, where
$$\tilde{\mu}_t(\mathbf{x}_t, \mathbf{x}_0) = \frac{\sqrt{\bar{\alpha}_{t-1}} \beta_t}{1-\bar{\alpha}_t} \mathbf{x}_0 + \frac{\sqrt{\alpha_t} \left(1-\bar{\alpha}_{t-1}\right)}{1-\bar{\alpha}_t} \mathbf{x}_t$$
 and $\tilde{\beta}_t = \frac{1-\bar{\alpha}_{t-1}}{1-\bar{\alpha}_t} \beta_t$

- $p_{\theta}(x_{t-1}|x_t) = \mathcal{N}(x_{t-1}; \boldsymbol{\mu}_{\theta}(x_t, t), \sigma_t^2 \mathbf{I}).$
- For $t \in \{2, \cdots, T\}$, L_{t-1} can be rewritten as :

$$L_{t-1} = \mathbb{E}_q \left[\frac{1}{2\sigma_t^2} \left\| \tilde{\boldsymbol{\mu}}_t \left(\boldsymbol{x}_t, \boldsymbol{x}_0 \right) - \boldsymbol{\mu}_{\theta} \left(\boldsymbol{x}_t, t \right) \right\|^2 \right] + C$$

Focusing on second term of L

• Reparameterize x_t , x_0 from $q(x_T|x_0) = \mathcal{N}(x_T; \sqrt{\bar{\alpha}_T}x_0, (1-\bar{\alpha}_T)\mathbf{I})$.

1.
$$x_t \to x_t (x_0, \epsilon) = \sqrt{\bar{\alpha}_t} x_0 + \sqrt{1 - \bar{\alpha}_t} \epsilon$$
 for $\epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$

2.
$$x_0 = \frac{1}{\sqrt{\bar{\alpha}_t}} \left(x_t \left(x_0, \epsilon \right) - \sqrt{1 - \bar{\alpha}_t} \epsilon \right)$$

• Since $\tilde{\boldsymbol{\mu}}_t\left(\mathbf{x}_t, \mathbf{x}_0\right) = \frac{\sqrt{\tilde{\alpha}_{t-1}}\beta_t}{1-\tilde{\alpha}_t}\mathbf{x}_0 + \frac{\sqrt{\alpha_t}\left(1-\tilde{\alpha}_{t-1}\right)}{1-\tilde{\alpha}_t}\mathbf{x}_t$,

$$\tilde{\boldsymbol{\mu}}_t\left(\mathbf{x}_t, \boldsymbol{\epsilon}\right) = \frac{1}{\sqrt{\alpha_t}} \left(\mathbf{x}_t - \frac{\beta_t}{\sqrt{1 - \bar{\alpha}_t}} \boldsymbol{\epsilon}\right)$$

• $\|\tilde{\mu}_t(x_t, x_0) - \mu_{\theta}(x_t, t)\|^2$ can be rewritten by reparameterization

$$\begin{split} L_{t-1} - C &= \mathbb{E}_{q} \left[\frac{1}{2\sigma_{t}^{2}} \left\| \tilde{\boldsymbol{\mu}}_{t}\left(\boldsymbol{x}_{t}, \boldsymbol{x}_{0}\right) - \boldsymbol{\mu}_{\theta}\left(\boldsymbol{x}_{t}, t\right) \right\|^{2} \right] \\ &= \mathbb{E}_{\boldsymbol{x}_{0}, \epsilon} \left[\frac{1}{2\sigma_{t}^{2}} \left\| \frac{1}{\sqrt{\alpha_{t}}} \left(\boldsymbol{x}_{t} - \frac{\beta_{t}}{\sqrt{1 - \bar{\alpha}_{t}}} \epsilon\right) - \boldsymbol{\mu}_{\theta}\left(\boldsymbol{x}_{t}\left(\boldsymbol{x}_{0}, \epsilon\right), t\right) \right\|^{2} \right] \end{split}$$

Reparametrization of $\mu_{\theta}(x_t, t)$

- Recall, $\tilde{\mu}_t(x_t, \epsilon) = \frac{1}{\sqrt{\alpha_t}} \left(x_t \frac{\beta_t}{\sqrt{1 \bar{\alpha}_t}} \epsilon \right)$.
- Since x_t is available as input to the model, we may choose the parametrization :

$$\boldsymbol{\mu}_{\theta}\left(x_{t},t\right) = \tilde{\boldsymbol{\mu}}_{t}\left(x_{t},\frac{1}{\sqrt{\bar{\alpha}_{t}}}\left(x_{t} - \sqrt{1 - \bar{\alpha}_{t}}\boldsymbol{\epsilon}_{\theta}\left(x_{t}\right)\right)\right) = \frac{1}{\sqrt{\alpha_{t}}}\left(x_{t} - \frac{\beta_{t}}{\sqrt{1 - \bar{\alpha}_{t}}}\boldsymbol{\epsilon}_{\theta}\left(x_{t},t\right)\right)$$

• L_{t-1} can be expressed as

$$\begin{aligned} L_{t-1} &= \mathbb{E}_{\mathsf{x}_0, \epsilon} \left[\frac{\beta_t^2}{2\sigma_t^2 \alpha_t (1 - \bar{\alpha}_t)} \left\| \epsilon - \epsilon_\theta \left(\mathsf{x}_t, t \right) \right\|^2 \right] \leftarrow \mathsf{x}_t = \sqrt{\bar{\alpha}_t} \mathsf{x}_0 + \sqrt{1 - \bar{\alpha}_t} \epsilon \\ &= \mathbb{E}_{\mathsf{x}_0, \epsilon} \left[\frac{\beta_t^2}{2\sigma_t^2 \alpha_t (1 - \bar{\alpha}_t)} \left\| \epsilon - \epsilon_\theta \left(\sqrt{\bar{\alpha}_t} \mathsf{x}_0 + \sqrt{1 - \bar{\alpha}_t} \epsilon, t \right) \right\|^2 \right] \end{aligned}$$

Finally, L can be expressed as

$$L = \mathbb{E}_q \left[L_T + \sum_{t>1} rac{eta_t^2}{2\sigma_t^2 lpha_t \left(1 - ar{lpha}_t
ight)} \left\| oldsymbol{\epsilon} - oldsymbol{\epsilon}_ heta \left(\sqrt{ar{lpha}_t} \mathsf{x}_0 + \sqrt{1 - ar{lpha}_t} oldsymbol{\epsilon}, t
ight)
ight\|^2 + L_0
ight]$$

Algorithm

 Authors say we found it beneficial to sample quality (and simpler to implement) to train on the following variant of the variational bound.

1.
$$L_{t-1} = \mathbb{E}_{x_0, \epsilon} \left[\left\| \epsilon - \epsilon_{\theta} \left(\sqrt{\overline{\alpha}_t} x_0 + \sqrt{1 - \overline{\alpha}_t} \epsilon, t \right) \right\|^2 \right],$$

2.
$$x_{t-1} \stackrel{\mathrm{d}}{=} \boldsymbol{\mu}_{\theta} (x_t, t) + \sigma_t z, \quad z \sim \mathcal{N} (0, \mathbf{I}),$$

3.
$$\mu_{\theta}(x_{t}, t) = \frac{1}{\sqrt{\alpha_{t}}} \left(x_{t} - \frac{1 - \alpha_{t}}{\sqrt{1 - \bar{\alpha}_{t}}} \epsilon_{\theta}(x_{t}, t) \right)$$

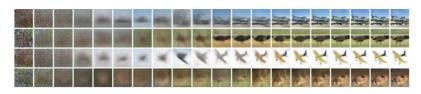


Figure 1: Unconditional CIFAR10 progressive generation.

Experiments

Table 1:	CIFAR10	results.	NLL	measured	in	bits/dim.
----------	---------	----------	-----	----------	----	-----------

Model	IS	FID	NLL Test (Train)	T-1-1- 0- 11 - 12	1 CIEA D 10			
Conditional		Table 2: Unconditional CIFAR10 reverse process parameterization and training objections.						
EBM [11]	8.30	37.9		tive ablation. Blank entries were unstable to				
JEM [17]	8.76	$38.4 \\ 14.73$		train and generated poor samples with out-of-				
BigGAN [3]	9.22							
StyleGAN2 + ADA (v1) [29]	10.06	2.67		range scores.				
Unconditional				Objective	IS	FID		
Diffusion (original) [53]			< 5.40	$ ilde{\mu}$ prediction (baseline)				
Gated PixelCNN [59]	4.60	65.93	3.03 (2.90)	L , learned diagonal Σ	7.28 ± 0.10	23.69		
Sparse Transformer [7]			2.80	L , fixed isotropic Σ	8.06 ± 0.09	13.22		
PixelIQN [43]	5.29	49.46		$\ \tilde{\boldsymbol{\mu}} - \tilde{\boldsymbol{\mu}}_{\theta}\ ^2$		_		
EBM [11]	6.78	38.2						
NCSNv2 [56]		31.75		ϵ prediction (ours)				
NCSN [55]	8.87 ± 0.12	25.32		L , learned diagonal Σ				
SNGAN [39]	8.22 ± 0.05	21.7		L , fixed isotropic Σ	7.67 ± 0.13	13.51		
SNGAN-DDLS [4]	9.09 ± 0.10	15.42						
StyleGAN2 + ADA (v1) [29]	9.74 ± 0.05	3.26		$\ \tilde{\boldsymbol{\epsilon}} - \boldsymbol{\epsilon}_{\theta}\ ^2 (L_{\text{simple}})$	9.46 ± 0.11	3.17		
Ours $(L, \text{ fixed isotropic } \Sigma)$	7.67 ± 0.13	13.51	$\leq 3.70 (3.69)$	·				
Ours (L_{simple})	9.46 ± 0.11	3.17	< 3.75 (3.72)					

Figure 2: This table shows Inception scores(IS), FID scores, and negative log likelihoods(NLL) (lossless codelengths) on CIFAR10.

- Experiment setting
 - 1. Set T = 1000.
 - 2. Set the forward process variances to constants increasing linearly from $\beta_1 = 10^{-1}$ to $\beta_T = 0.02$.
 - 3. To represent the reverse process, DDPM use a [1, U-Net] backbone similar to an unmasked [2, PixelCNN++].

References I

Tim Salimans et al. PixelCNN++: Improving the PixelCNN with Discretized Logistic Mixture Likelihood and Other Modifications. 2017.

arXiv: 1701.05517 [cs.LG]. URL: https://arxiv.org/abs/1701.05517.