Denoising Diffusion Probabilistic Models

Jonathan Ho and Ajay Jain and Pieter Abbeel
NeurlPS 2020

Department of Statistics, Seoul National University
Presented by Sangmoon Han

2025-09-04

1/12

Overview

Do (Xt—1|%¢)
@H ()) H

Xt|Xz 1)

® Let T €N

® Denoising Diffusion Probabilistic Models(DDPM) are generative models having

two steps.

1. Define a process which converts image data xp to standard gaussian data
XT.

2. Define a reverse process to learn a finite-time reversal of this process.

2/12

Forward Process

® Let xo denote a data distributed according to some unknown distribution g (xo)

® For xo.7, DDPM considers the joint distribution g(xo:7) by fixed S1,..., 87 as
T
a(x01) = q(0) [[alxelxe—1), qlxelxe—1) := N /1 = Bexe—1, Bel)
t=1

® That means g(xo.7) is considered as a Markov chain that gradually adds

Gaussian noise.

Xe|Xe— 1—\/1—ﬁtXt 1-|-\/767 GNN(O,I)

3/12

Forward Process

® Properties of the forward process of DDPM :

1. Let at:=1—f; and @; := Hi:l as, then
xe|xo ~ q(xe|x0) = N (xe; Vaexo, (1 — @e)l)
Xt |xo 4 Vaxo + V1 —are, €~ N(0,I)

2. f0< B <1, forallt=1,---,T, then @ —0as T — oo and
qg(xt|x0) = N(x7;0,1) as T — o0

® First property means if one wishes to sample x;, it can be drawn directly from
q(x¢|x0) rather than using the full forward process g(xi.t|xo).

® Second property means the sample xr generated by g(xo:7) can be viewed as
the sample generated from N(0, 1) for sufficient large T.

4/12

Diffusion models

® Although the forward process q(x:|x:—1) is Markov chain, the time-reversed
sequence y; ‘= XT_; iS not guaranteed to be Markov under g, hence directly

sampling backward from x7 to xo is generally intractable.

® From the perspective of variational inference, Diffusion models consider

po(x0.7) called the reverse process as the approximate distribution of g(xo.7).

® DDPM considers py(xo:7) is defined as a Markov chain with Gaussian
transitions starting at p(x7) = N(x7;0,1) :

.
po(x0.7) = p(xr) [[poCxe-1lx), po(xe-1lxe) := N(xe—1; pro(xe,), oe1)

t=1

, where o2 are hyperparameters, 0 are learnable parameters.

5/12

Objective function

® Training is performed by minimizing the KL divergence between these two:!
Dk, (q(x0:7)lIPo(%0:7)) = —Eq(x. 1) llog po (x0:7)] + C1

Po (Xt—1|X
= Eq(xg,x1,- xr) |~ logp(x7) — Zlog (xe—1lxt) +G

q (xt|xe—1)

=L

SE [~ log ps (x0)] + s, where pg(x) = / po (0. 7) b 7

® Furthermore, L can be rewritten as :

L=Eq | Dxr (g (x71x0) llp (x7)) + Y Dxr. (q (xe—1xe, x0) [l (xe—1x:)) — log pg (xolx1)

t>1
Lt Ly Lo

® [+ does not include parameters and is therefore treated as a constant.

® Since xp is a discrete random vector taking values in {0, ..., 255},
Lo = —log pg (xo|x1) is approximated by a discrete probability density, but details are
skiped here.

1ln DDPM, " Training is performed by optimizing the usual variational bound on negative

log likelihood”

6/12

Focusing on second term of L

° If g(x) =N (x|p1,011) , p(x) =N (x|p2,031),
d o2\ | d(of —03) + [lps — pol|?
D — —
alale) o 5 1og (%) + o
® q(xe—1|x¢, x0) can be computed as
4 (et 20) = N (e (e, 30), Bet)
where fi, (xe,x0) = Yert 4 YOG ang g, — 1t
® po (xe—1|xt) = N (xe—1; pg (xe, t) , o21).
°

For t € {2,---, T}, Li—1 can be rewritten as :

1 .
Lot = o | 5z e Ot 30) — g (e,)| + €
t

7/12

Focusing on second term of L

® Reparameterize x;, xo from g(x7|x) = N(x1; Varx, (1 — ar)l).
1. X — xt (x0,€) = V@rxo + /1 — ace for e ~ N(0,1)
2. x0 = ﬁ (xt (x0,€) — /1 — @)

_ VE vEac)

® Since fi, (x¢, x0) = T—ar

p’t (Xta E) =

1

S
Ot 1-— (073

® ||fit (xe, X0) — o (xt, t) ||* can be rewritten by reparameterization

1 -
Lems = € = By | 0 s s 20) = 1y (s O
t

1

=Ex,e
€1 202

N JI-a.

L <xt - Le> — iy (xe (0, €) , £)

T

8/12

Reparametrization of gy (x;, t)

~ _ 1 ﬁ
Recall, My (Xf,e) = \/T—t (XtL — \/ﬁe)
® Since x; is available as input to the model, we may choose the parametrization :

Ho (Xe, t) = 1, <Xt, \/% (x — V1 — dues (Xt))) = \/% (xt - %69 (xt, t))

L:—1 can be expressed as

2
Ly =Ey e __h lle — €0 (xe, O)|I°| 4 xc = Varxo + V1 — ace
202 (1 — &)

— En {/37 le— e (VAo + vI—ae.) HZ]

202 (1 — &)

Finally, L can be expressed as

= = 2
LT+Z20’[OK}.L]-_at He (\/OT:X0+ 1iat6’t)H +L0

9/12

Algorithm

Algorithm 1 Training Algorithm 2 Sampling

1 repeat 1: xr ~ N(0,1I)

2: xONq(,XO) 2: fort="T,...,1do

i' L IJi}l(l(f)orIr)n({l,“.,T}) 3 z~N(0,I)ift >1,elsez=0

T e~ s
5: Take gradient descent step on 4 X1 = ﬁ (xi - jﬁeﬂ(xtvt)) + otz
Vo ||e —eo(varxo +v1— &te,t)”Q 5: end for
6: return xg

6: until converged

® Authors say we found it beneficial to sample quality (and simpler to
implement) to train on the following variant of the variational bound.

1 Ly =B [He — €0 (Vo + VI — e, t) H2] ,
2. xe1= py (e, t) + 002z, z~N(0,1),

3 (x t“)—i x—l_ate(x t)
- Mg (Xt _\/OTt t /1_0—“9 t

....""(!VK%VVVvay
0 D O P P e e e e

Figure 1: Unconditional CIFAR10 progressive generation.

[m] = =

) Y
10/12

Experiments

Table 1: CIFAR10 results. NLL measured in bits/dim.

Model s FID NLL Test (Train) .
— Table 2: Unconditional CIFAR10 reverse

Conditional process parameterization and training objec-

EBM [11] 8.30 37.9 tive ablation. Blank entries were unstable to

JEM [17] 8.76 38.4 train and generated poor samples with out-of-

BigGAN [3] 9.22 14.73 Anee SCores

StyleGAN2 + ADA (v1) [29] 10.06 2.67 range scores.

Unconditional Objective 1 FIb

Diffusion (original) [53] < 5.40 £ prediction (baseline)

Gated PixelCNN [59] 4.60 65.93 3.03 (2.90) L, learned diagonal 3 7.284+0.10 23.69

Sparse Transformer [7] 2.80 L, fixed isotropic 3% 8.06+£0.09 13.22

PixellQN [43] 5.29 49.46 16— fall? - ,

EBM[11] 6.78 38.2 —

NCSNv2 [56] 31.75 € prediction (ours)

NCSN [55] 8.87+0.12 25.32 —

SNGAN [39] 8.2240.05 21.7 Dleameddigond X s1ioas 1381

SNGAN-DDLS [4] 9.0940.10 15.42 - fixed isotropic : - 3

StyleGAN2 + ADA (vI) [29] 9.74+0.05 3.26 € —eoll” (Lsimpie) ~ 9.46+0.11 3.17

Ours (I, fixed isotropic) 7.67+0.13 13.51

Ours (Lsimpic) 9.46+0.11 3.17

Figure 2: This table shows Inception scores(IS), FID scores, and negative log
likelihoods(NLL) (lossless codelengths) on CIFAR10.

® Experiment setting

1. Set T = 1000.

2. Set the forward process variances to constants increasing linearly from

B1 =107! to 87 = 0.02.

3. To represent the reverse process, DDPM use a [1, U-Net] backbone

similar to an unmasked [2, Pixel CNN-++].

11/12

References |

B

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-Net:
Convolutional Networks for Biomedical Image Segmentation. 2015. arXiv:
1505.04597 [cs.CV]. URL: https://arxiv.org/abs/1505.04597.

Tim Salimans et al. PixelCNN++: Improving the Pixel CNN with
Discretized Logistic Mixture Likelihood and Other Modifications. 2017.

arXiv: 1701.05517 [cs.LG]. URL:
https://arxiv.org/abs/1701.05517.

12/12

https://arxiv.org/abs/1505.04597
https://arxiv.org/abs/1505.04597
https://arxiv.org/abs/1701.05517
https://arxiv.org/abs/1701.05517

	Diffusion model

