Erasing Concepts from Diffusion Models

Rohit Gandikota and Joanna Materzynska and Jaden Fiotto-Kaufman and David Bau ICCV 2023

Department of Statistics, Seoul National University
Presented by Sangmoon Han

2025-09-07

Table of Contents

1. Classifier-free guidance

2. Erased Stable Diffusion

3. Experiments

Overview

- Given only a short text description of an undesired visual concept and no additional data, Erased Stable Diffusion(ESD) fine-tunes model weights to erase the targeted concept.
- ESD can avoid NSFW("Not Safe For Work") content, stop imitation of a specific artist's style, or even erase a whole object class from model output.

noise-based Diffusion models for Text-to-Image

- Let x_0 denote image data, c denote text data, $T \in \mathbb{N}$
- Let $\epsilon \sim \mathcal{N}(0, I)$, $t \in \{0, ..., T\}$.
- Refer to diffusion models as noise(ϵ)-based diffusion models(NBDM) that share the following patterns :
 - 1. $f(x_0, t, \epsilon)$, called the forward operator, is specified so that $x_t = f(x_0, t, \epsilon)$ and, at t = T, x_T is approximately pure noise, e.g., DDPM:

$$x_t = \sqrt{\bar{\alpha}_t} x_0 + \sqrt{1 - \bar{\alpha}_t} \epsilon, \qquad \epsilon \sim \mathcal{N}(0, I).$$

- , where $\bar{\alpha}_t$ are hyperparameters.
- 2. Training is performed by minimizing \mathcal{L} with function $\epsilon_{\theta}(x_t, t, c)$ with learnable parameters θ :

$$\mathcal{L} \propto \mathbb{E}_{x_0,c,t,\epsilon} [\|\epsilon - \epsilon_{\theta}(x_t,t,c)\|_2^2],$$

• For simplicity, let $\mathcal{L} = \mathbb{E}_{x_0,t,\epsilon} [\|\epsilon - \epsilon_{\theta}(x_t,t,c)\|_2^2]$.

noise-based Diffusion models for Text-to-Image

3. $g(x_t, t, \epsilon_{\theta}(x_t, t, c))$, called the reverse operator, is specified so that $x_{t-1} = g(x_t, t, \epsilon_{\theta}(x_t, t, c))$ and, at t = T, $x_T \sim \mathcal{N}(0, I)$, e.g., DDPM:

$$x_{t-1} = \frac{1}{\sqrt{\alpha_t}} \left(x_t - \frac{1 - \alpha_t}{\sqrt{1 - \bar{\alpha}_t}} \, \epsilon_{\theta}(x_t, t, c) \right) + \sigma_t z, \quad z \sim \mathcal{N}(0, I).$$

, where $\bar{\alpha}_t, \alpha_t, \sigma_t$ are hyperparameters.

4. For sampling, initialize $x_T \sim \mathcal{N}(0, I)$ and, iteratively denoise using ϵ_θ .

$$x_{t-1} = g(x_t, t, \epsilon_{\theta}(x_t, t, c)), \quad \text{For } t = T, \cdots, 1$$

• In short, an NBDM is diffusion model whose $\epsilon_{\theta}(x_t, t, c)$ estimates the injected noise ϵ and is used both for training and inference.

Classifier-free guidance

- Classifier-free guidance(CFG) is a technique employed to regulate image generation, as described in [1, Ho et al].
- Compared to a NBDM, CFG introduces two changes with $0 < p_{\rm uncond} < 1$, a guidance scale $s \ge 0$:
 - 1. Randomly drop the condition with $p_{\rm uncond}$, training is performed by minimizing \mathcal{L}' :

$$c' = egin{cases} arnothing & ext{with prob.} \ p_{ ext{uncond}}, \ c & ext{otherwise,} \end{cases} \qquad \mathcal{L}' = \mathbb{E}_{\mathsf{x}_0,c',t} ig[\|\epsilon - \epsilon_{ heta}(\mathsf{x}_t,t,c')\|_2^2 ig].$$

2. Form a guided prediction with a guidance scale $s \ge 0$ and use it in the usual update:

$$egin{aligned} \hat{\epsilon}_{ heta}(x_t,t,c) &= \epsilon_{ heta}(x_t,t,arnothing) + sig(\epsilon_{ heta}(x_t,t,c) - \epsilon_{ heta}(x_t,t,arnothing)ig) \ &= egin{dcases} \epsilon_{ heta}(x_t,t,arnothing), & s = 0 \ \epsilon_{ heta}(x_t,t,c), & s = 1 \ \epsilon_{ heta}(x_t,t,arnothing) + sig(\epsilon_{ heta}(x_t,t,c) - \epsilon_{ heta}(x_t,t,arnothing)ig), & s > 1 \end{cases}$$

, then reverse operator is $g(x_t, t, \hat{\epsilon}_{\theta}(x_t, t, c))$

Method of Erasing Concepts from Diffusion Models (ESD)

- Let ϵ_{θ^*} denotes pretrained NBDM, ϵ_{θ} denotes the NBDM to be fine-tuned.
- Let C_{erase} denotes a set of the concepts to erase, $c_0 = \emptyset$ the null prompt, and $\eta > 0$ the erase strength.
- For time step t and noised input x_t ,

$$\tilde{\epsilon}(x_t, t, c) = \epsilon_{\theta^*}(x_t, t, c_0) - \eta(\epsilon_{\theta^*}(x_t, t, c) - \epsilon_{\theta^*}(x_t, t, c_0)).$$

• Training is performed by minimizing $\mathcal{L}_{\mathsf{erase}}(\theta)$:

$$\mathcal{L}_{\mathsf{erase}}(heta) = \mathbb{E}_{\mathsf{x}_0,t,\,c\in\mathcal{C}_{\mathsf{erase}}} \left[\ \left\| \epsilon_{ heta}(\mathsf{x}_t,t,c) - ilde{\epsilon}(\mathsf{x}_t,t,c)
ight\|_2^2 \
ight].$$

Importance of Parameter Choice

- Cross-attention parameters, illustrated in (a), directly depending on the text of the prompt.
- Other parameters, illustrated in (b), tend to contribute to a visual concept even if the concept is not mentioned in the prompt.

Importance of Parameter Choice

 Tuning the the cross-attention parameters only (ESD-x) erases the distinctive style of Van Gogh specifically when his name is mentioned in the prompt, keeping the interference with other artistic styles to a minimum.

Experiments

- When removing NSFW content it is important that the visual concept of "nudity" is removed globally, especially in cases when nudity is not mentioned in the prompt.
- I2P is a collection of 4,703 diverse text prompts that can generate harmful or inappropriate (NSFW) images, but do not explicitly mention NSFW terms.
- Using [2, Nudenet] detector, The figure shows the percentage change in the nudity-classified samples compared to the original model.

References I

Jonathan Ho and Tim Salimans. Classifier-Free Diffusion Guidance.

2022. arXiv: 2207.12598 [cs.LG]. URL: https://arxiv.org/abs/2207.12598.

Bedapudi Praneeth, brett koonce, and Alireza Ayinmehr.

bedapudi6788/NudeNet: place for checkpoint files. Version v0. Dec.

2019. DOI: 10.5281/zenodo.3584720. URL: https://doi.org/10.5281/zenodo.3584720.