Regression under demographic parity constraints via unlabeled post-processing

Gayane Taturyan, Evgenii Chzhen (NeurIPS 2024) Presented by YunSeop Shin September 28, 2025

Seoul national university, statistics, IDEA LAB

Introduction

- This paper considers the regression setting and proposes a
 post-processing procedure that, given a regressor
 η(x) = E[Y | X = x], adjusts its predictions so that they
 satisfy demographic-parity constraints.
- The post-processing is learned using unlabeled feature samples only, and the method assumes access to estimates of $\eta(x)$ and $\tau(x) = (\mathbb{P}(S = s \mid X = x))_{s=1}^{K}$.
- The authors discretize the output space and, on this finite grid, post-process the regressor into a randomized decision rule $\pi(\cdot \mid x)$ that behaves like a probabilistic classifier over grid points.
- They then minimize an entropy-regularized risk subject to demographic-parity constraints and can obtain a closed form for $\pi(\cdot \mid x)$.

1

Notation

- $(X, S, Y) \in \mathbb{R}^d \times [K] \times \mathbb{R}$: Feature, Sensitive attribute, Output.
- $\eta(x) := \mathbb{E}[Y \mid X = x]$ and assume $|\eta(X)| \leq B$.
- $\mathbf{p} := (p_s)_{s \in [K]}$, with $p_s := \mathbb{P}(S = s)$.
- $\tau(x) := (\tau_s(x))_{s \in [K]}$, with $\tau_s(x) := \mathbb{P}(S = s | X = x)$.
- $\pi(y|x): \mathcal{B}(\mathbb{R}) \times \mathbb{R}^d \to [0,1]: A$ randomized prediction function.
- For any π define a random variable \hat{Y}_{π} s.t.

$$\hat{Y}_{\pi}|X=x\sim\pi(\cdot|x).$$

- $\mathcal{R}(\pi) := \mathbb{E}[(\hat{Y}_{\pi} \eta(X))^2]$: Risk of a prediction function π .
- $\mathcal{U}_s(\pi, \hat{y}) := |\mathbb{E}[\pi(\hat{y}|X)|S = s] \mathbb{E}[\pi(\hat{y}|X)]|$: Measure of Unfairness.

Proposed methodology

 Discretization: For given integer L ≥ 0 and real B > 0, a uniform grid

$$\hat{\mathcal{Y}}_L := \left\{ -B, -\frac{B(L-1)}{L}, \cdots, -\frac{B}{L}, 0, \frac{B}{L}, \cdots, \frac{B(L-1)}{L}, B \right\}.$$

Author define Entrophic regularization as

$$\mathcal{R}_eta(\pi) := \mathcal{R}(\pi) + rac{1}{eta} \mathbb{E}[\Psi(\pi(\cdot|X))]$$

where $\Psi(\mu) := \sum_{y \in \text{supp}(\mu)} \mu(y) \log(\mu(y))$ and β is strength of regularization.

 Optimal discretized entropic-regularized fair estimator can be obtained by

$$\begin{aligned} \operatorname{argmin}_{\pi} \Big\{ \mathcal{R}_{\beta}(\pi) : \operatorname{supp}(\pi(\cdot|x)) &= \hat{\mathcal{Y}}_{L} \text{ for } x \in \mathcal{R}^{d}, \\ \mathcal{U}_{s}(\pi, \hat{y}) &\leq \epsilon_{s} \text{ for } \hat{y} \in \hat{\mathcal{Y}}_{L}, \ s \in [K] \}. \end{aligned}$$

Closed form expression of the solution

- In this case, $\sigma = (\sigma_1, \sigma_2, \cdots, \sigma_m) : \mathbb{R}^m \to \mathbb{R}^m$ is the softmax function as $\sigma_j(\omega) = \frac{\exp(\omega_j)}{\sum_{i=1}^m \exp(\omega_i)}$ where $\omega = (\omega_1, \cdots, \omega_m)^t \in \mathbb{R}^m$ and m = 2L + 1.
- Author denote by $\mathsf{LSE}_\beta:\mathbb{R}^m \to \mathbb{R}$ the log-sum-exp function, defined as

$$\mathsf{LSE}_{eta}(\omega) = rac{1}{eta} \log \left(\sum_{j=1}^m exp(eta \omega_j)
ight).$$

Closed form expression of the solution

• Let $\mathbf{t}(x) := 1 - \mathsf{Diag}(\mathbf{p})^{-1}\tau(x), \epsilon := (\epsilon_s)_s, \lambda_l = (\lambda_{ls})_s, \nu_l = (\nu_{ls})_s$ be length K vectors and $r_l(x) := (\eta(x) - \frac{lB}{L})^2$. For $L \in \mathbb{N}$ and $\beta > 0$, optimal discretized entropic-regularized fair estimator is given by

$$\pi_{\hat{\mathbf{\Lambda}},\hat{\mathbf{V}}}\left(\frac{BI}{L}|x\right) = \sigma_{I}\left(\beta(\langle \hat{\lambda}_{l'} - \hat{\nu}_{l'},\mathbf{t}(x)\rangle - r_{l'}(x))_{l'\in[[L]]}\right) \text{ for } I \in [[L]]$$
 where $\hat{\mathbf{\Lambda}} = (\hat{\lambda}_{ls})_{l,s}$ and $\hat{\mathbf{V}} = (\hat{\nu}_{ls})_{l,s}$ matrices are solutions to
$$\operatorname{argmin}_{\mathbf{\Lambda},\mathbf{V}}\left\{F(\mathbf{\Lambda},\mathbf{V}) = \mathbb{E}[\mathsf{LSE}_{\beta}(\langle \lambda_{l} - \nu_{l},\mathbf{t}(X)\rangle - r_{l}(X))_{l\in[[L]]}] + \sum_{I\in[[L]]}\langle \lambda_{I} + \nu_{I},\epsilon\rangle\right\}.$$

Post-processing algorithm

• Gradient of $F(\Lambda, V)$ is

$$\nabla_{\square_{ls}} F(\mathbf{\Lambda}, \mathbf{V}) = \Delta \mathbb{E} \Big[\sigma_l \Big(\beta \left(\langle \lambda_{l'} - \nu_{l'}, \mathbf{t}(X) \rangle - r_{l'}(X) \Big)_{l' \in [[L]]} \Big) \ t_s(X) \Big] + \epsilon_s$$
 where $\square \in \lambda, \nu$ and $\Delta = 1$ if $\square = \lambda$ and $\Delta = -1$ otherwise.

• Using the approximation of this gradient, we perform T steps of stochastic gradient descent to obtain the estimates $\hat{\Lambda}$ and $\hat{\mathbf{V}}$.

Theoretical guarantees

• Main theoretical guarantee is that both unfairness and risk decrease at the rate $\frac{1}{\sqrt{T}}$ i.e.,

$$\mathbb{E}^{1/2} \left[\sum_{\ell \in [[L]]} \sum_{s \in [K]} \left(\mathcal{U}_s \left(\pi_{\hat{\mathbf{\Lambda}}, \hat{\mathbf{V}}}, \, \frac{B\ell}{L} \right) - \epsilon_s \right)_+^2 \right] = O\left(\frac{1}{\sqrt{T}} \right) \text{ and }$$

$$\mathcal{E}(\pi_{\hat{\mathbf{\Lambda}}, \hat{\mathbf{V}}}) = O\left(\frac{1}{\sqrt{T}} \right)$$

where $\mathcal{E}(\pi_{\hat{\mathbf{\Lambda}},\hat{\mathbf{V}}})$ is the excess risk, which is defined as the difference between the risk of $\pi_{\hat{\mathbf{\Lambda}},\hat{\mathbf{V}}}$ and that of the Bayes estimator.

7

Experiment

- Risk and unfairness of author's estimator on Communities and Crime and Law School datasets.
- Authors Split the data 0.4/0.4/0.2. The first 40% (with labels and the sensitive attribute) trains η and τ . The next 40% (features only) uses them to learn the post-processing $\hat{\pi}$. Finally, the last 20% is for testing.