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Introduction

• This paper considers the regression setting and proposes a

post-processing procedure that, given a regressor

η(x) = E[Y | X = x ], adjusts its predictions so that they

satisfy demographic-parity constraints.

• The post-processing is learned using unlabeled feature samples

only, and the method assumes access to estimates of η(x) and

τ(x) = (P(S = s | X = x))Ks=1.

• The authors discretize the output space and, on this finite

grid, post-process the regressor into a randomized decision

rule π(· | x) that behaves like a probabilistic classifier over

grid points.

• They then minimize an entropy-regularized risk subject to

demographic-parity constraints and can obtain a closed form

for π(· | x).
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Notation

• (X ,S ,Y ) ∈ Rd × [K ]× R : Feature, Sensitive attribute,

Output.

• η(x) := E[Y | X = x ] and assume |η(X )| ≤ B.

• p := (ps)s∈[K ], with ps := P(S = s).

• τ(x) := (τs(x))s∈[K ], with τs(x) := P(S = s|X = x).

• π(y |x) : B(R)× Rd → [0, 1] : A randomized prediction

function.

• For any π define a random variable Ŷπ s.t.

Ŷπ|X = x ∼ π(·|x).

• R(π) := E[(Ŷπ − η(X ))2] : Risk of a prediction function π.

• Us(π, ŷ) := |E[π(ŷ |X )|S = s]− E[π(ŷ |X )]| : Measure of

Unfairness.
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Proposed methodology

• Discretization: For given integer L ≥ 0 and real B > 0, a

uniform grid

ŶL :=

{
−B,−B(L− 1)

L
, · · · ,−B

L
, 0,

B

L
, · · · , B(L− 1)

L
,B

}
.

• Author define Entrophic regularization as

Rβ(π) := R(π) +
1

β
E[Ψ(π(·|X ))]

where Ψ(µ) :=
∑

y∈supp(µ) µ(y) log(µ(y)) and β is strength of

regularization.

• Optimal discretized entropic-regularized fair estimator can be

obtained by

argminπ

{
Rβ(π) : supp(π(·|x)) = ŶL for x ∈ Rd ,

Us(π, ŷ) ≤ ϵs for ŷ ∈ ŶL, s ∈ [K ]}.
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Closed form expression of the solution

• In this case, σ = (σ1, σ2, · · · , σm) : Rm → Rm is the softmax

function as σj(ω) =
exp(ωj )∑m
i=1 exp(ωi )

where

ω = (ω1, · · · , ωm)
t ∈ Rm and m = 2L+ 1.

• Author denote by LSEβ : Rm → R the log-sum-exp function,

defined as

LSEβ(ω) =
1

β
log

 m∑
j=1

exp(βωj)

 .
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Closed form expression of the solution

• Let

t(x) := 1− Diag(p)−1τ(x), ϵ := (ϵs)s , λl = (λls)s , νl = (νls)s

be length K vectors and rl(x) := (η(x)− lB
L )

2. For L ∈ N and

β > 0, optimal discretized entropic-regularized fair estimator

is given by

πΛ̂,V̂

(
Bl

L
|x
)

= σl

(
β(⟨ λ̂l ′ − ν̂l ′ , t(x)⟩ − rl ′(x))l ′∈[[L]]

)
for l ∈ [[L]]

where Λ̂ = (λ̂ls)l ,s and V̂ = (ν̂ls)l ,s matrices are solutions to

argminΛ,V
{
F (Λ,V) = E[LSEβ(⟨λl − νl , t(X )⟩ − rl(X ))l∈[[L]]]

+
∑
l∈[[L]]

⟨λl + νl , ϵ⟩}.
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Post-processing algorithm

• Gradient of F (Λ,V) is

∇□ls
F (Λ,V) = ∆E

[
σl

(
β
(
⟨λl ′ − νl ′ , t(X )⟩ − rl ′(X )

)
l ′∈[[L]]

)
ts(X )

]
+ϵs

where □ ∈ λ, ν and ∆ = 1 if □ = λ and ∆ = −1 otherwise.

• Using the approximation of this gradient, we perform T steps

of stochastic gradient descent to obtain the estimates Λ̂ and

V̂.
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Theoretical guarantees

• Main theoretical guarantee is that both unfairness and risk

decrease at the rate 1√
T

i.e.,

E1/2

 ∑
ℓ∈[[L]]

∑
s∈[K ]

(
Us

(
πΛ̂,V̂,

Bℓ
L

)
− ϵs

)2

+

 = O

(
1√
T

)
and

E(πΛ̂,V̂) = O

(
1√
T

)
where E(πΛ̂,V̂) is the excess risk, which is defined as the

difference between the risk of πΛ̂,V̂ and that of the Bayes

estimator.
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Experiment

• Risk and unfairness of author’s estimator on Communities and

Crime and Law School datasets.

• Authors Split the data 0.4/0.4/0.2. The first 40% (with labels

and the sensitive attribute) trains η and τ . The next 40%

(features only) uses them to learn the post-processing π̂.

Finally, the last 20% is for testing.
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