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Introduction

e This paper considers the regression setting and proposes a
post-processing procedure that, given a regressor
n(x) = E[Y | X = x], adjusts its predictions so that they
satisfy demographic-parity constraints.

e The post-processing is learned using unlabeled feature samples
only, and the method assumes access to estimates of 7(x) and
r(x) = (B(S = s | X = x))L.

e The authors discretize the output space and, on this finite
grid, post-process the regressor into a randomized decision
rule m(- | x) that behaves like a probabilistic classifier over
grid points.

e They then minimize an entropy-regularized risk subject to
demographic-parity constraints and can obtain a closed form

for (- | x).



e (X,S,Y) € RY x [K] x R : Feature, Sensitive attribute,
Output.

e 7n(x) :=E[Y | X = x] and assume |n(X)| < B.

®p:= (Ps)sE[K]v with ps :=P(S =s).

o 7(x) == (7s(x))se[k], With 75(x) :=P(S = s[X = x).

e m(y|x): B(R) x RY — [0,1] : A randomized prediction
function.

e For any 7 define a random variable Y, s.t.
Yol X = x ~ m(:|x).
o R(m) :=E[(Yx — n(X))?] : Risk of a prediction function .

o Us(m,y) = |E[x(7|X)|S = s] — E[x(7|X)]| : Measure of
Unfairness.



Proposed methodology

e Discretization: For given integer L > 0 and real B >0, a
uniform grid

o B(L—-1) B B B(L—-1)
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e Author define Entrophic regularization as
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B

where W(4) 1= 3" cqpp(u) #(¥) log(u(y)) and B is strength of
regularization.

Rp(m) = R(m) + ZE[W (7 (:|X))]

e Optimal discretized entropic-regularized fair estimator can be
obtained by

argmin,. {Rﬁ(w) - supp(7(-|x)) = Yy for x € RY,
Us(r,9) < es for g € D1, s € [K]}.



Closed form expression of the solution

e In this case, 0 = (01,02, ,0m) : R™ — R™ is the softmax

function as 0j(w) = % where
w= (w1, ,wm) €R™and m=2L+1.
e Author denote by LSEg : R™ — R the log-sum-exp function,

defined as

LSEg(w) = ;Iog > exp(Buy)
j=1



Closed form expression of the solution

o Let
t(X) =1- Diag(p)_lT(X)a €= (65)5, Al = ()\/5)571// = (Vls)s
be length K vectors and ri(x) := (n(x) — %)2. For L € N and
B > 0, optimal discretized entropic-regularized fair estimator

is given by
TR <BIIX> =0 (5(0\// — Dy, t(x)) — rl’(X))l’e[[L]]> for | € [[L]]

where A = (A;s);s and V = (5); s matrices are solutions to

argminay { F(A, V) = E[LSEs(( A — v, (X)) — r/(X))/e[[Ln]

+ ) (Nt vpe)

Ie[[L]]



Post-processing algorithm

e Gradient of F(A,V) is
VD,SF(A,V) = AE[O’/ (5 (<)\// — vy, t(X)> = rII(X))/’G[[L]]> ts(X)i| +€5

where € \,vand A =1if = X and A = —1 otherwise.

e Using the approximation of this gradient, we perform T steps
of stochastic gradient descent to obtain the estimates A and
V.



Theoretical guarantees

e Main theoretical guarantee is that both unfairness and risk

g
decrease at the rate N

27| 5 3 (u(mse %) - o)’ =0 () e
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where (7 ) is the excess risk, which is defined as the
difference between the risk of 73 i, and that of the Bayes
estimator.
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e Risk and unfairness of author’s estimator on Communities and
Crime and Law School datasets.

e Authors Split the data 0.4/0.4/0.2. The first 40% (with labels
and the sensitive attribute) trains 17 and 7. The next 40%
(features only) uses them to learn the post-processing 7.
Finally, the last 20% is for testing.



