Review of 'Fair Regression with Wasserstein Barycenters' Chzhen et al., NeurIPS 2020

Presented by Kunwoong Kim

Department of Statistics, Seoul National University

September 30, 2025

1/11

Overview

- Problem: (Group-)fair regression
 We aim to find a function that minimizes the mean squared error under the demographic parity constraint.
- Idea: Alignment of predictions using Wasserstein barycenter.
- Proposed method: A post-processing algorithm for perfect fairness.

2/11

Notation

- Variables
 - ullet $X \in \mathbb{R}^d$: an input random vector
 - ullet $Y\in\mathbb{R}$: a real-valued output
 - ullet $S\in\mathcal{S}$: a sensitive attribute (e.g., $\mathcal{S}=\{0,1\}$)
- Distributions
 - \bullet \mathbb{P} : the joint distribution of (X,S,Y).
 - $\mathbb{P}_{X,S}$: the marginal distribution of (X,S).
- ullet Cumulative Distribution Function (CDF) For a given probability measure $\mu,$ we denote F_{μ} as the CDF of $\mu.$
- Quantile Function

For a given probability measure μ , we denote $Q_{\mu}:[0,1]\to\mathbb{R}$ as the quantile function of μ . That is, $Q_{\mu}(t)=\inf\{y\in\mathbb{R}:F_{\mu}(y)>t\}$ for $t\in(0,1]$.

Problem setting

A standard regression model:

$$Y = f(X, S) + \eta,$$

where $\eta \in \mathbb{R}$ is a centered random variable.

 \bullet Let f^* be the true regression function such that

$$f^*(x,s) = \mathbb{E}\left(Y|X=x,S=s\right).$$

 \bullet Given f, denote $\nu_{f|s}$ as the conditional distribution of f(X,S)|S=s. The CDF of $\nu_{f|s}$ is given by

$$F_{\nu_{f|s}}(t) = \mathbb{P}(f(X,S) \le t|S=s).$$

Kunwoong Kim

Fairness notion

Definition 1 ((Strong) demographic parity)

A prediction model $g:\mathbb{R}^d imes \mathcal{S} o \mathbb{R}$ is fair if, for every $s,s' \in \mathcal{S}$

$$\sup_{t\in\mathbb{R}} \left| \mathbb{P}(g(X,S) \le t | S = s) - \mathbb{P}(g(X,S) \le t | S = s') \right| = 0. \tag{1}$$

ullet Strong demographic parity defined in this paper requires the Kolmogorov-Smirnov distance to be zero for all s,s'.

Kunwoong Kim Septemb

Theorem 2

Let $p_s:=\mathbb{P}(S=s).$ Assume that $\nu_{f^*|s}$ has a density for each $s\in\mathcal{S}.$ Then, we have

$$\min_{g \text{ is fair}} \mathbb{E} \left(f^*(X, S) - g(X, S) \right)^2 = \min_{\nu} \sum_{s \in S} p_s W_2^2(\nu_{f^*|s}, \nu) \tag{2}$$

Moreover, if g^* and ν^* solve the left-hand-side and the right-hand-side of Equation (2) respectively, then $\nu^* = \nu_{g^*}$ and

$$g^*(x,s) = \left(\sum_{s' \in \mathcal{S}} p_{s'} Q_{f^*|s'}\right) \circ F_{f^*|s}(f^*(x,s)).$$

• Implication: We can obtain an optimal fair regression model by: sequentially doing (i) quantile matching and (ii) transforming to barycenter.

In other words, the optimal fair prediction model q^* is a transformation of f^* defined by

$$g^*(x,s) = p_s f^*(x,s) + (1-p_s)t^*(x,s),$$

where t^* is a correction so that the quantile of $f^*(X,s)$ is the same as the quantile of $f^*(X, s')$ for $s \neq s'$.

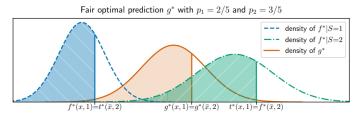


Figure 1: For a new point (x,1), the value $t^*(x,1)$ is chosen such that the shaded Green Area (//) $\mathbb{P}(f^*(X,S) \leq t^*(x,1)|S=2)$ equals to the shaded Blue Area (\\) = $\mathbb{P}(f^*(X,S) \leq f^*(x,1)|S=1)$. The final prediction $g^*(x,1)$ is a convex combination of $f^*(x,1)$ and $t^*(x,1)$. The same is done for $(\bar{x},2)$.

Main results

- Let $\mathcal{D}_n := \{(x_i, s_i, y_i)\}_{i=1}^n$ be a given dataset. Let $\mathcal{D}_n^s := \{(x_i, s_i, y_i) \in \mathcal{D}_n\}_{i:s_i=s}$ be a subset of \mathcal{D}_n conditional on s and let $n_s = |\mathcal{D}_n^s|$.
- Let $\hat{F}_{f|s}$ and $\hat{Q}_{f|s}$ be the empirical CDF and empirical quantile function for a given f, respectively. Let \hat{f} be a given prediction model (e.g., empirical risk minimizer) and define

$$\hat{g}(x,s) = \left(\sum_{s' \in \mathcal{S}} \hat{p}_{s'} \hat{Q}_{\hat{f}|s'}\right) \circ \hat{F}_{\hat{f}|s} \left(\hat{f}(x,s) + \epsilon\right),$$

where $\epsilon \sim \text{Unif}([-\sigma, \sigma])$.

ullet Assume that (i) $\nu_{f^*|s}$ admits a bounded density for each $s \in \mathcal{S}$ and (ii) there exists a positive constant c and a sequence b_n such that $\mathbb{E}|f^*(X,S)-\hat{f}(X,S)| \leq cb_n^{-1/2}$.

Theorem 3

Set $\sigma \leq \min_{s \in S} n_s^{-1/2} \wedge b_n^{-1/2}$. Then, we have

$$\mathbb{E}|g^*(X,S) - \hat{g}(X,S)| \lesssim b_n^{-1/2} \bigvee \left(\sum_{s \in S} p_s n_s^{-1/2}\right) \bigvee \sqrt{\frac{|\mathcal{S}|}{n}}.$$
 (3)

4 D > 4 D > 4 D > 4 D >

Experiments

- Performance measures
 - Prediction

$$MSE(g) = \frac{1}{n} \sum_{(x_i, s_i, y_i) \in \mathcal{D}_n} (y_i - g(x_i, s_i))^2$$

Fairness

$$\mathsf{KS}(g) = \max_{s,s' \in \mathcal{S}} \sup_{t \in \mathbb{R}} \left| \frac{1}{n_s} \sum_{(x_i,s_i,y_i) \in \mathcal{D}_n^s} \mathbb{I}(g(x_i,s_i) \leq t) - \frac{1}{n_{s'}} \sum_{(x_i,s_i,y_i) \in \mathcal{D}_n^{s'}} \mathbb{I}(g(x_i,s_i) \leq t) \right| \tag{4}$$

Experimental results

	CRIME		LAW		NLSY		STUD		UNIV	
Method	MSE	KS	MSE	KS	MSE	KS	MSE	KS	MSE	KS
RLS	.033±.003	$.55 \pm .06$.107±.010	.15±.02	.153±.016	.73±.07	4.77±.49	$.50 \pm .05$	2.24±.22	.14±.01
RLS+Berk	.037±.004	.16±.02	.121±.013	.10±.01	.189±.019	$.49 \pm .05$	5.28±.57	.32±.03	2.43±.23	$.05 \pm .01$
RLS+Oneto	.037±.004	.14±.01	.112±.012	.07±.01	.156±.016	$.50 \pm .05$	$5.02 \pm .54$.23±.02	2.44±.26	$.05 \pm .01$
RLS+Ours	.041±.004	.12±.01	.141±.014	.02±.01	.203±.019	.09±.01	$5.62 \pm .52$	$.04 \pm .01$	2.98±.32	$.02 \pm .01$
KRLS	.024±.003	$.52 \pm .05$.040±.004	.09±.01	.061±.006	$.58 \pm .06$	3.85±.36	$.47 \pm .05$	1.43±.15	.10±.01
KRLS+Oneto	.028±.003	.19±.02	.046±.004	.05±.01	.066±.007	.06±.01	4.07±.39	$.18 \pm .02$	1.46±.13	.04±.01
KRLS+Perez	.033±.003	.25±.02	.048±.005	.04±.01	.065±.007	.08±.01	3.97±.38	.14±.02	1.50±.15	.06±.01
KRLS+Ours	.034±.004	.09±.01	.056±.005	.01±.01	.081±.008	.03±.01	4.46±.43	$.03 \pm .01$	1.71±.16	$.02 \pm .01$
RF	.020±.002	.45±.04	.046±.005	.11±.01	.055±.006	$.55 \pm .06$	3.59±.39	$.45 \pm .05$	1.31±.13	.10±.01
RF+Raff	.030±.003	.21±.02	.058±.006	.06±.01	.066±.006	.08±.01	4.28±.40	$.09 \pm .01$	1.38±.12	$.02 \pm .01$
RF+Agar	.029±.003	.13±.01	.050±.005	.04±.01	.065±.006	.07±.01	3.87±.41	.07±.01	1.40±.13	.02±.01
RF+Ours	.033±.003	.08±.01	.064±.006	.02±.01	.070±.007	.03±.01	4.18±.38	$.02 \pm .01$	1.49±.14	.01±.01

Table 1: Results for all the datasets and all the methods concerning MSE and KS.

- Performs well for various datasets and models.
- MSE is slightly larger than the baselines, while KS is slightly lower than the baselines.

10/11

Thank you