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Introduction



X € R? : d-dimensional feature vector,

S € {0,1} : Binary Sensitive Attribute,

Y €{0,1} : Binary Label,

g:R?Yx {0,1} — {0,1} : Classifier (a measurable function),
® p(z,s):=P(Y =1| X =x,5 = s) : Regression Function
R(g) :=P(g(X,S) #Y) : Risk Function.



Introduction

Problem Motivation

@® Machine learning is widely deployed in society, but models often produce unfair
outcomes when predictions correlate with sensitive attributes (e.g. gender,
race).

® The paper focuses on Equal Opportunity(EO) Fairness, which requires equal
True Positive Rates(TPR) across sensitive groups.

» Equal Opportunity
A classifier g(x,s) € {0,1} is called fair if

P(g(X,8)=1|9=1Y=1)=P(g(X,5)=1[5=0,Y =1).

The set of all fair classifiers is denoted by F(P).



What We Show?

Among all EO-fair classifiers F(IP), which classifier minimizes the risk?
Answering the question above is equivalent to solving the following problem:

min  R(g), R(g) =P(g9(X,5) #Y).

gEF(P)
Equivalently,

min R(g) s.t. P(9=1| Y=1,5=1) = P(¢9=1 | Y=1, S=0).

g

Our paper shows that the EO—optimal classifier takes the following form:
g 1) =1{ 1<) (2 - spmy) b 7@ 0) = 1{1 <@, 0) (24 sryts= ) }-

where 0 € R is chosen to equalize the two groups’ TPRs and satisfies [0*| < 2.



What We Show? (continued)

We do not know the true distribution P nor the oracle shift #*. Our approach
estimates them empirically (via a plug-in scheme using labeled data for 7 and
unlabeled data for é) and then proves consistency:

E[A(g,P)] »0 and  E[R(9)] — R(g"),
— —
asymptotically fair asymptotically optimal

where A(g,P) :=|P(g(X,S)=1|S=1Y =1)-P(g(X,5)=1]5=0,Y =1)|.
Here, A(g,P) is what we call Unfairness in this paper.



Methods



In this section, we explain why the EO-optimal classifier takes the form introduced

earlier,
g (z,1) = 1{ 1< n(:c,l)(z— m)} g"(x,0) = 1{ 1< 77(%0)(2"‘ wflis:oﬂ}

how to estimate the unknown quantities in that rule (the distribution P> and the
shift %), and why the resulting plug-in classifier is consistent.

» Assumption
We assume that we have at our disposal two datasets, labeled D,, and unlabeled Dy:

Dy = {(X;, S0 Ym0 B, Dy = {(X, SOVZN R Pas.
Notation for group counts in Dy:

n+N

Nyi= > 1{S;=s}, N:= > N, (s€{0,1}).

i=n+1 s€{0,1}



Optimal EO Classifier Proof Sketch (1/3)

Step 1. Wrap EO into a Lagrangian. Start from

min R(g) st. P(g=1|Y=1,5=1)=P(g=1]| Y=1,5=0).

g9

Introduce a multiplier A and consider the saddle problem min, maxy £(g, \). By
weak duality, solving maxy ming £(g, A) is enough to identify the optimal form.

L(g,\) = R(g) + A(P(g:1 | Y=1,5=1) - P(g=1 | Y=1, S:o)).

Step 2. Linearize in g. Write both the risk and the EO term as expectations that are

linear in g:

R(g) = const — Z P(SZS) EX\S:S[Q(X> S) (277()(75) - 1)}:
se{0,1}

and the EO difference as Ex|s—s[7(X,s) g(X,s)]/P(Y=1| S = s). This lets us
minimize £(g, \) pointwise in (z, s).



Optimal EO Classifier Proof Sketch (2/3)

Step 3. Pointwise minimization = threshold rule.
For each (z,s), choose g(x,s) € {0,1} that minimizes the local linear expression.
This yields, for any fixed X,

ga(z,1) = 1{1 < 7](:[,1)(2 — m)} , ga(z,0) = 1{1 < n(z,0) (2 + m)} .
So the solution must be a thresholded Bayes regressor with group-dependent shift.

For fixed A\, L(g,\) is linear in g. The pointwise coefficient of g(z, s) equals

~(2n(z,5) — 1) P(S=s) + A- % 1{s=1} — A- % 1{s=0} .

from risk
from EO term

Choose g(z, s) = 1 iff this coefficient < 0. For s=1 it reduces to
1 <n(z,1)(2 = A/P(Y=1,5=1)); for s=0 to 1 < n(z,0)(2+ A/P(Y=1, S=0)).



Optimal EO Classifier Proof Sketch (3/3)

Step 4. Pick A\ = 0™ to satisfy EO.
Choose 6* so that the two TPRs match:

Ex|s=1[n(X,1) go~ (X, 1)] B Exs—o[n(X, 0) go= (X, 0)]

P(Y=1] S=1) P(Y=1] S=0)

Under mild continuity, there exists a unique 6" that equalizes the two TPRs.

Define ¢(A) := TPR1(gx) — TPRo(gx). With no mass at the threshold, ¢ is continuous and strictly

monotone in A, so by the intermediate value theorem there is a unique root.

Step 5. Conclude optimality.
At (go~,0") we satisfy EO and attain the dual optimum. Weak duality then implies
go+ minimizes risk among all EO-fair classifiers.

Step 6. Range of 0*.
We show
4 >0 and 2+ 0

TPY=15=1) PY=1,5=0) "

hence —2P(Y=1,5=0) < 0" < 2P(Y=1,S=1) and in particular |6"| < 2.



Proposed Plug-in Procedure (1/2)

Regression estimator

An estimator 1) of n(z,s) :=P(Y =1 | X =x,S5 = s) is constructed from the
labeled sample D,, and is independent of the unlabeled sample Dy (e.g., by sample
splitting).

Empirical Distributions Dy

For s € {0,1}, Define

7 _ 1 H o1

Pxjs=s = {(X,5)eDpn:S=s}] Z{(X,S)GDN:S:s} ox, Ps= N Z{(X,S)EDN} ds

where 0. denotes the Dirac point mass at z (i.e., the measure that assigns
probability 1 to the singleton {z} and 0 elsewhere).



Proposed Plug-in Procedure (2/2)

From the optimal-form family

g (z,1) = 1{ 1 < n(z, 1)(2 - IP(Y%*,S:U) } ;g (x,0) = 1{ 1 < n(z,0) <2 + m)}.
the unknowns are the joint terms P(Y = 1, S = s) and the regression 7.

Use the empirical distributions from Dy .
With the unlabeled sample and 7 (trained on D,,), define

n+N

Bxsmlf(X)] = 1 > f(X)1{Si=s),  Bs(S=s)= "

S i=n+1

Then we estimate the (population) joint by

B(Y = 1,5 = 5) := Exjs=s[(X, 5)] Ps(S = s)

This equality holds by the law of total expectation and the definition of 7:

PY=1|S=s)=E[Y|S=s]=E[E[Y | X,S=s]|S=s]=E[n(X,s)|S =s].



Empirical Unfairness (Definition)

For any classifier g, an estimator 7) based on the labeled dataset D,,, and an
unlabeled sample Dy, the empirical unfairness is defined as

A(g,P) :=

Ex‘izl[ﬁ(X, Dg(X,1)] IEX\i:o[ﬁ(K 0) 9(X,0)] ‘
EX\S:l[ﬁ(le)} EXIS=0[77(X7 0)]

~ 1 =~ N
Here, Ex|s=s[f(X)] = A len]\f‘_l (X;)1{S; = s} and Ps(S=s)= N are

computed from the unlabeled dataset Dn.

Key Remark: The empirical unfairness A(g,IP’) is data-driven and does not involve
any unknown population quantities.



Recall that the EO—optimal classifier g* can be written in terms of a parameter 6*.
Since 0™ and the true distribution P are unknown, we define the empirical plug-in
classifier gy by substituting empirical estimates:

oz, 1) = 1{1 < ﬁ(:u,l)(Z - ﬁ)} Jo(x,0) = 1{1 < iz, 0)(2 n m)}

We then estimate 6" via

) in A(ge,P).
0 €arg min (90, P)

Why [-2,2]?
This interval ensures that the thresholds in gg remain positive (i.e., well-defined),
since 24+ 0/P(Y = 1,5 = s) > 0 implies |0] < 2.



Theorem (Consistency of the plug-in rule). As n, N — co with 7 trained on D,
independently of Dy,

E[A(9,P)] = 0 and E[R(g)] — R(g").
—_——— —_—————

asymptotically fair asymptotically optimal

» Assumptions

® Regression consistency (A1)
E[11(X, ) - n(X, $)]] = 0.

® No mass at thresholds / continuity (A2)
For s € {0,1}, the law of 1(X, s) has no point mass at the EO thresholds; small
neighborhoods have vanishing probability.

© LLN on unlabeled sample (A3)
Empirical conditionals from Dy converge: IAEX‘S:S[f(X)} — Ex|s=s[f(X)] for
bounded f.

© Shift identification (A4)
O = [—2, 2], and the population EO gap ¢(0) := TPR1(g0) — TPRo(gs) has a
unique root 6*.



Consistency Proof Sketch (1/2)

Step 1. Population target. Let gy be the EO-threshold rule obtained by plugging the
true quantities 7 and P(Y'=1, S=s). Define the population EO gap

¢(0) := A(go,P) = |TPR1(go) — TPRo(go)|-
By shift identification, ¢ has a unique root 0" and ¢(6*) = 0.

Step 2. Empirical objective. Define the data-driven gap

¢(0) = A(go,P),

where go uses 7) and P(Y'=1, S=s) (from D,, and Dy respectively).



Consistency Proof Sketch (2/3)

Step 3. Uniform convergence of the EO gap.

sup [(6) — ¢(6)] =+ 0

6e[—2,2]

Sketch. (i) Replace population conditionals by unlabeled empirical ones: LLN on Dy
(A3).

(i) Replace 7 by #: regression consistency in L' (A1).

(iii) Handle the indicator discontinuity: no mass at the moving thresholds (A2)
makes the boundary band negligible.

Compact parameter set © = [—2, 2] (A4) gives uniformity.

Step 4. Argmin consistency for the shift. By the M-estimation argmin theorem on
compact ©, uniform convergence (Step 3) and uniqueness (A4) imply

0 € argeerfliQQ] o0) = 0 X 0.



Consistency Proof Sketch (3/3)

Step 5. Conclude fairness and risk consistency. Decision regions differ only where
n(X,S) lies in a vanishing band around the thresholds or where @ deviates from 6*:

]P’(gé(X, S) ;ﬁgg*(X,S)) — 0.

Hence
A(g,ﬂb) = A(§é7p) - A(99*7]P>) = 07

and for the risk,

IR (g5) — R(go-)| < E[|2n(X,S) —1[1{gy # ge=}] — 0.

Takeaway. Uniform control of the EO gap = 6—6*, and the plug-in classifier
§ = g4 becomes asymptotically fair and risk-consistent.



Conclusion




Conclusion

Contributions

We propose a label-efficient EO calibration method that leverages unlabeled data to
learn a single group-dependent shift, avoiding retraining and heavy reliance on labels.
Unlike prior approaches, we characterize the EO-optimal rule in closed form and
establish strong optimality and consistency guarantees.

Experiment results
Across 5 datasets, our method consistently reduces DEO with little or no loss in
accuracy. For example, with more unlabeled data (RF + Ours, fixed labeled budget

|Dn| =1/10):  COMPAS: ACC 0.68—0.71, DEO 0.07—0.05.  Adult: ~ ACC
0.79—0.80, DEO 0.06—0.04.
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