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Introduction



Notations

• X ∈ Rd : d-dimensional feature vector,

• S ∈ {0, 1} : Binary Sensitive Attribute,

• Y ∈ {0, 1} : Binary Label,

• g : Rd × {0, 1} → {0, 1} : Classifier (a measurable function),

• η(x, s) := P(Y = 1 | X = x, S = s) : Regression Function

• R(g) := P(g(X,S) ̸= Y ) : Risk Function.



Introduction

Problem Motivation

1 Machine learning is widely deployed in society, but models often produce unfair
outcomes when predictions correlate with sensitive attributes (e.g. gender,
race).

2 The paper focuses on Equal Opportunity(EO) Fairness, which requires equal
True Positive Rates(TPR) across sensitive groups.

▶ Equal Opportunity
A classifier g(x, s) ∈ {0, 1} is called fair if

P
(
g(X,S) = 1

∣∣S = 1, Y = 1
)
= P

(
g(X,S) = 1

∣∣S = 0, Y = 1).

The set of all fair classifiers is denoted by F(P).



What We Show?

Among all EO-fair classifiers F(P), which classifier minimizes the risk?
Answering the question above is equivalent to solving the following problem:

min
g∈F(P)

R(g), R(g) := P
(
g(X,S) ̸= Y

)
.

Equivalently,

min
g

R(g) s.t. P(g=1 | Y=1, S=1) = P(g=1 | Y=1, S=0).

Our paper shows that the EO–optimal classifier takes the following form:

g∗(x, 1) = 1
{
1 ≤ η(x, 1)

(
2− θ∗

P(Y =1,S=1)

)}
, g∗(x, 0) = 1

{
1 ≤ η(x, 0)

(
2 + θ∗

P(Y =1,S=0)

)}
.

where θ∗ ∈ R is chosen to equalize the two groups’ TPRs and satisfies |θ∗| ≤ 2.



What We Show? (continued)

We do not know the true distribution P nor the oracle shift θ∗. Our approach
estimates them empirically (via a plug-in scheme using labeled data for η̂ and
unlabeled data for θ̂) and then proves consistency:

E[∆(ĝ,P)] → 0︸ ︷︷ ︸
asymptotically fair

and E[R(ĝ)] → R(g∗)︸ ︷︷ ︸
asymptotically optimal

,

where ∆(g,P) :=
∣∣P(g(X,S) = 1 | S = 1, Y = 1)− P(g(X,S) = 1 | S = 0, Y = 1)

∣∣.
Here, ∆(g,P) is what we call Unfairness in this paper.



Methods



Set Up

In this section, we explain why the EO-optimal classifier takes the form introduced
earlier,

g∗(x, 1) = 1
{
1 ≤ η(x, 1)

(
2− θ∗

P(Y =1,S=1)

)}
, g∗(x, 0) = 1

{
1 ≤ η(x, 0)

(
2 + θ∗

P(Y =1,S=0)

)}
.

how to estimate the unknown quantities in that rule (the distribution P and the
shift θ∗), and why the resulting plug-in classifier is consistent.

▶ Assumption
We assume that we have at our disposal two datasets, labeled Dn and unlabeled DN :

Dn = {(Xi, Si, Yi)}ni=1
i.i.d.∼ P, DN = {(Xi, Si)}n+N

i=n+1
i.i.d.∼ PX,S .

Notation for group counts in DN :

Ns :=

n+N∑
i=n+1

1{Si = s}, N :=
∑

s∈{0,1}

Ns (s ∈ {0, 1}).



Optimal EO Classifier Proof Sketch (1/3)

Step 1. Wrap EO into a Lagrangian. Start from

min
g

R(g) s.t. P(g=1 | Y=1, S=1) = P(g=1 | Y=1, S=0).

Introduce a multiplier λ and consider the saddle problem ming maxλ L(g, λ). By
weak duality, solving maxλ ming L(g, λ) is enough to identify the optimal form.

L(g, λ) = R(g) + λ
(
P(g=1 | Y=1, S=1)− P(g=1 | Y=1, S=0)

)
.

Step 2. Linearize in g. Write both the risk and the EO term as expectations that are
linear in g:

R(g) = const −
∑

s∈{0,1}

P(S=s)EX|S=s

[
g(X, s) (2η(X, s)− 1)

]
,

and the EO difference as EX|S=s[ η(X, s) g(X, s) ]/P(Y=1 | S = s). This lets us
minimize L(g, λ) pointwise in (x, s).



Optimal EO Classifier Proof Sketch (2/3)

Step 3. Pointwise minimization ⇒ threshold rule.
For each (x, s), choose g(x, s) ∈ {0, 1} that minimizes the local linear expression.
This yields, for any fixed λ,

gλ(x, 1) = 1
{
1 ≤ η(x, 1)

(
2− λ

P(Y =1,S=1)

)}
, gλ(x, 0) = 1

{
1 ≤ η(x, 0)

(
2 + λ

P(Y =1,S=0)

)}
.

So the solution must be a thresholded Bayes regressor with group-dependent shift.

For fixed λ, L(g, λ) is linear in g. The pointwise coefficient of g(x, s) equals

−
(
2η(x, s)− 1

)
P(S=s)︸ ︷︷ ︸

from risk

+ λ · η(x, 1)

P(Y=1 | S=1)
1{s=1} − λ · η(x, 0)

P(Y=1 | S=0)
1{s=0}︸ ︷︷ ︸

from EO term

.

Choose g(x, s) = 1 iff this coefficient ≤ 0. For s=1 it reduces to
1 ≤ η(x, 1)

(
2− λ/P(Y=1, S=1)

)
; for s=0 to 1 ≤ η(x, 0)

(
2 + λ/P(Y=1, S=0)

)
.



Optimal EO Classifier Proof Sketch (3/3)

Step 4. Pick λ = θ∗ to satisfy EO.
Choose θ∗ so that the two TPRs match:

EX|S=1

[
η(X, 1) gθ∗(X, 1)

]
P(Y=1 | S=1)

=
EX|S=0

[
η(X, 0) gθ∗(X, 0)

]
P(Y=1 | S=0)

.

Under mild continuity, there exists a unique θ∗ that equalizes the two TPRs.

Define ϕ(λ) := TPR1(gλ)−TPR0(gλ). With no mass at the threshold, ϕ is continuous and strictly

monotone in λ, so by the intermediate value theorem there is a unique root.

Step 5. Conclude optimality.
At (gθ∗ , θ

∗) we satisfy EO and attain the dual optimum. Weak duality then implies
gθ∗ minimizes risk among all EO-fair classifiers.

Step 6. Range of θ∗.
We show

2− θ∗

P(Y = 1, S = 1)
> 0 and 2 +

θ∗

P(Y = 1, S = 0)
> 0,

hence −2P(Y=1, S=0) < θ∗ < 2P(Y=1, S=1) and in particular |θ∗| ≤ 2.



Proposed Plug-in Procedure (1/2)

Regression estimator
An estimator η̂ of η(x, s) := P(Y = 1 | X = x, S = s) is constructed from the
labeled sample Dn and is independent of the unlabeled sample DN (e.g., by sample
splitting).

Empirical Distributions DN

For s ∈ {0, 1}, Define

P̂X|S=s = 1
|{(X,S)∈DN :S=s}|

∑
{(X,S)∈DN :S=s} δX , P̂S = 1

N

∑
{(X,S)∈DN} δS

where δz denotes the Dirac point mass at z (i.e., the measure that assigns
probability 1 to the singleton {z} and 0 elsewhere).



Proposed Plug-in Procedure (2/2)

From the optimal-form family

g∗(x, 1) = 1
{
1 ≤ η(x, 1)

(
2− θ∗

P(Y =1,S=1)

)}
, g∗(x, 0) = 1

{
1 ≤ η(x, 0)

(
2 + θ∗

P(Y =1,S=0)

)}
.

the unknowns are the joint terms P(Y = 1, S = s) and the regression η.

Use the empirical distributions from DN .
With the unlabeled sample and η̂ (trained on Dn), define

ÊX|S=s[f(X)] :=
1

Ns

n+N∑
i=n+1

f(Xi)1{Si = s}, P̂S(S = s) :=
Ns

N
.

Then we estimate the (population) joint by

P̂(Y = 1, S = s) := ÊX|S=s

[
η̂(X, s)

]
P̂S(S = s)

This equality holds by the law of total expectation and the definition of η:

P(Y = 1 | S = s) = E[Y | S = s ] = E[E[Y | X,S = s] | S = s ] = E[ η(X, s) | S = s ] .



Empirical Unfairness (Definition)

For any classifier g, an estimator η̂ based on the labeled dataset Dn, and an
unlabeled sample DN , the empirical unfairness is defined as

∆̂(g,P) :=

∣∣∣∣∣ ÊX|S=1

[
η̂(X, 1) g(X, 1)

]
ÊX|S=1

[
η̂(X, 1)

] −
ÊX|S=0

[
η̂(X, 0) g(X, 0)

]
ÊX|S=0

[
η̂(X, 0)

] ∣∣∣∣∣.

Here, ÊX|S=s[f(X)] =
1

Ns

∑n+N
i=n+1 f(Xi)1{Si = s} and P̂S(S = s) =

Ns

N
are

computed from the unlabeled dataset DN .

Key Remark: The empirical unfairness ∆̂(g,P) is data-driven and does not involve
any unknown population quantities.



Estimation of θ

Recall that the EO–optimal classifier g∗ can be written in terms of a parameter θ∗.
Since θ∗ and the true distribution P are unknown, we define the empirical plug-in
classifier ĝθ by substituting empirical estimates:

ĝθ(x, 1) = 1
{
1 ≤ η̂(x, 1)

(
2− θ

P̂(Y =1,S=1)

)}
, ĝθ(x, 0) = 1

{
1 ≤ η̂(x, 0)

(
2 + θ

P̂(Y =1,S=0)

)}
.

We then estimate θ∗ via
θ̂ ∈ arg min

θ∈[−2,2]
∆̂(ĝθ,P).

Why [-2,2]?
This interval ensures that the thresholds in ĝθ remain positive (i.e., well-defined),
since 2± θ/P̂(Y = 1, S = s) > 0 implies |θ| ≤ 2.



Consistency

Theorem (Consistency of the plug-in rule). As n,N → ∞ with η̂ trained on Dn

independently of DN ,

E[∆(ĝ,P)] → 0︸ ︷︷ ︸
asymptotically fair

and E[R(ĝ)] → R(g∗)︸ ︷︷ ︸
asymptotically optimal

.

▶ Assumptions

1 Regression consistency (A1)
E[ |η̂(X,S)− η(X,S)| ] → 0.

2 No mass at thresholds / continuity (A2)
For s ∈ {0, 1}, the law of η(X, s) has no point mass at the EO thresholds; small
neighborhoods have vanishing probability.

3 LLN on unlabeled sample (A3)
Empirical conditionals from DN converge: ÊX|S=s[f(X)] → EX|S=s[f(X)] for
bounded f .

4 Shift identification (A4)
Θ = [−2, 2], and the population EO gap ϕ(θ) := TPR1(gθ)− TPR0(gθ) has a
unique root θ∗.



Consistency Proof Sketch (1/2)

Step 1. Population target. Let gθ be the EO-threshold rule obtained by plugging the
true quantities η and P(Y=1, S=s). Define the population EO gap

ϕ(θ) := ∆(gθ,P) =
∣∣TPR1(gθ)− TPR0(gθ)

∣∣.
By shift identification, ϕ has a unique root θ∗ and ϕ(θ∗) = 0.

Step 2. Empirical objective. Define the data-driven gap

ϕ̂(θ) := ∆̂(ĝθ,P),

where ĝθ uses η̂ and P̂(Y=1, S=s) (from Dn and DN respectively).



Consistency Proof Sketch (2/3)

Step 3. Uniform convergence of the EO gap.

sup
θ∈[−2,2]

∣∣ϕ̂(θ)− ϕ(θ)
∣∣ p−→ 0

Sketch. (i) Replace population conditionals by unlabeled empirical ones: LLN on DN

(A3).
(ii) Replace η by η̂: regression consistency in L1 (A1).
(iii) Handle the indicator discontinuity: no mass at the moving thresholds (A2)
makes the boundary band negligible.
Compact parameter set Θ = [−2, 2] (A4) gives uniformity.

Step 4. Argmin consistency for the shift. By the M-estimation argmin theorem on
compact Θ, uniform convergence (Step 3) and uniqueness (A4) imply

θ̂ ∈ arg min
θ∈[−2,2]

ϕ̂(θ) =⇒ θ̂
p−→ θ∗.



Consistency Proof Sketch (3/3)

Step 5. Conclude fairness and risk consistency. Decision regions differ only where
η(X,S) lies in a vanishing band around the thresholds or where θ̂ deviates from θ∗:

P
(
ĝθ̂(X,S) ̸= gθ∗(X,S)

)
→ 0.

Hence
∆(ĝ,P) = ∆(ĝθ̂,P) → ∆(gθ∗ ,P) = 0,

and for the risk,∣∣R(ĝθ̂)−R(gθ∗)
∣∣ ≤ E[ |2η(X,S)− 1|1{ĝθ̂ ̸= gθ∗}] → 0.

Takeaway. Uniform control of the EO gap ⇒ θ̂→θ∗, and the plug-in classifier
ĝ = ĝθ̂ becomes asymptotically fair and risk-consistent.



Conclusion



Conclusion

Contributions
We propose a label-efficient EO calibration method that leverages unlabeled data to
learn a single group-dependent shift, avoiding retraining and heavy reliance on labels.
Unlike prior approaches, we characterize the EO-optimal rule in closed form and
establish strong optimality and consistency guarantees.

Experiment results
Across 5 datasets, our method consistently reduces DEO with little or no loss in
accuracy. For example, with more unlabeled data (RF + Ours, fixed labeled budget
|Dn| = 1/10): COMPAS: ACC 0.68→0.71, DEO 0.07→0.05. Adult: ACC
0.79→0.80, DEO 0.06→0.04.
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