Bayesian Reward Models for LLM Alignment

ICML 2024 Workshop on Structured Probabilistic Inference & Generative Modeling (SPIGM)
ICLR 2024 Workshop on Secure and Trustworthy Large Language Models (SeT-LLM)

Haeyoung Lee

August 6, 2025

Seoul National University

Problem Definition

Why is LLM Alignment Challenging?

- LLM can generate responses that are fluent but misaligned with human intent.
- Reward models are trained to predict human preferences and used to align LLM outputs.
- Two main uses of reward models:
 - ► **Best-of-N (BoN) sampling:** Select the best response among *n* candidates using reward scores.
 - Reinforcement Learning from Human Feedback (RLHF): Fine-tune the LLM so that its response distribution directly maximizes the reward.
- In both cases, alignment quality heavily depends on the reward model's accuracy.

Problem Definition

Problem: Reward Overoptimization or 'Hacking'

- Reward models are trained on finite data and are inherently imperfect.
- This imperfection can lead to reward overoptimization or 'hacking', where responses receive high rewards due to model flaws.
- Out-of-distribution(OOD) regions often cause reward models to misjudge poor responses due to limited data.

Figure 1: reward overoptimization in LLM alignment

Notation

- θ : Vectorized trainable LoRA parameters, $\theta = \text{vec}(\Delta W)$
- D: Training dataset used to learn θ
- W₀: Frozen pretrained weight matrix
- $\Delta W = BA$: Low-rank update to frozen weights W_0
- $A \in \mathbb{R}^{n_{lr} \times n_{in}}$, $B \in \mathbb{R}^{n_{out} \times n_{lr}}$: Low-rank matrices
- x: Prompt or input query
- y: LLM-generated response
- y_w , y_l : Preferred (winner) and less-preferred (loser) response in preference data
- $r_{\theta}(x, y)$: Reward score for response y to prompt x
- $r_{\theta_{MAP}}(x, y)$: Reward score from MAP-estimated weights
- $\Lambda(x,y)$: Variance of $r_{\theta}(x,y)$ from Laplace approximation
- r_{eval}: Evaluation reward model (proxy or gold)
- π_{ref} : Response distribution from the reference LLM
- n: Number of responses sampled in Best-of-n
- $KL_{bon} = log(n) \frac{n-1}{n}$: KL divergence induced by BoN sampling

Background

Reward Modeling

- In LLM alignment, human preferences are typically modeled using a reward model r_θ.
- The Bradley-Terry model is defined for a pair of responses (x, y_w) and (x, y_l) to a prompt x:

$$P(y_w > y_l) = \frac{e^{r_{\theta}(x, y_w)}}{e^{r_{\theta}(x, y_w)} + e^{r_{\theta}(x, y_l)}}$$
$$= \sigma(r_{\theta}(x, y_w) - r_{\theta}(x, y_l))$$

 The reward model is learned by maximizing log-likelihood given a fixed preference dataset:

$$\max_{\theta} \mathbb{E}_{x, y_w, y_l} [\log \sigma(r_{\theta}(x, y_w) - r_{\theta}(x, y_l))]$$

 After learning, BoN sampling or RLHF can be applied.

Best-of-N (BoN) Sampling

- A decoding strategy to align LLM outputs with a given reward model without further fine-tuning the LLM policy.
- For any test prompt, BoN samples n responses, uses the reward model to rank them, and selects the best one (with the highest reward).
- The KL divergence between the BoN policy and the reference policy measures the degree of optimization as n increases:

$$KL_{bon} = \log(n) - \frac{n-1}{n}$$

Background

Standard LoRA (MAP)

- Parameter-efficient fine-tuning for LLMs: keep pretrained weights W_0 fixed, add low-rank perturbation $\Delta W = BA$.
- Output: $h = W_0 a + BAa$ where $B \in \mathbb{R}^{n_{out} \times n_{lr}}, A \in \mathbb{R}^{n_{lr} \times n_{in}}$.
- ΔW is trained as a point estimate (MAP), used for single forward pass : ΔW = ΔW_{MAP}
- Predicts using one softmax output.
- MAP models output a single deterministic score, thus cannot capture uncertainty, especially in OOD regions.

Laplace-LoRA (Bayesian LoRA)

- Applies post-hoc Laplace approximation to perform Bayesian inference on LoRA weights.
- Prior: $P(\theta) = \mathcal{N}(0, \lambda^{-1}I)$ for $\theta = \text{vec}(\Delta W)$.
- Approximate posterior: $P(\theta|D) \approx \mathcal{N}(\theta_{\text{MAP}}, \Sigma)$.
- Enables epistemic uncertainty estimates via sampling multiple θ from posterior \to Run multiple forward passes \to Average softmax outputs

Proposed Method

Laplace-LoRA for Reward Modeling

- Goal: Mitigate reward overoptimization by modeling uncertainty in reward predictions using Laplace-LoRA.
- **Step 1:** Train a standard LoRA-based reward model to get point estimates $r_{\theta_{MAP}}(x, y)$.
- Step 2: Apply Laplace approximation post-hoc to obtain posterior:

$$r_{\theta}(x, y) \sim \mathcal{N}(r_{\theta_{\mathsf{MAP}}}(x, y), \Lambda(x, y))$$

- Uncertainty-Aware Reward Penalties:
 - ► Std penalty: $\tilde{r}_{std}(x, y) = r_{\theta_{MAP}}(x, y) k\sqrt{\Lambda(x, y)}$
 - ► Var penalty: $\tilde{r}_{var}(x,y) = r_{\theta_{MAP}}(x,y) k\Lambda(x,y)$
- Extension: Can be combined with reward ensembles; apply Laplace to each model and penalize the average reward.

7

Experiment Setup

Goal: Evaluate how uncertainty-aware Bayesian reward models affect BoN sampling and reward overoptimization.

Setup:

- **Gold reward model:** LLaMA 7B, fine-tuned on human preferences (AlpacaFarm dataset).
- Proxy reward model: Pythia-70M with LoRA.
- LLM policy: Pythia-1.4B, used to generate responses via BoN sampling.

Procedure:

- For each prompt x, sample n candidate responses y_1, \ldots, y_n from $\pi_{ref}(y|x)$.
- Rank the candidates using the proxy reward model.
- Select the highest-scoring response and evaluate it using both the proxy and the gold reward models.

Results

- ullet MAP reward increases with more BoN samples, but gold reward drops o reward hacking.
- Laplace (LA) mitigates this with uncertainty penalties (variance/std), especially at high KL.
- LA Ens (Laplace + Ensemble) achieves the best overall performance.
- Variance-based penalty slightly outperforms std-based under large k.

Figure 2: reward scores (proxy/gold) for MAP, LA, Ens, LA Ens

Thank you!