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Problem Definition

Why is LLM Alignment Challenging?

® | LM can generate responses that are fluent but misaligned with
human intent.

® Reward models are trained to predict human preferences and used
to align LLM outputs.
® Two main uses of reward models:
» Best-of-N (BoN) sampling: Select the best response among n
candidates using reward scores.
> Reinforcement Learning from Human Feedback (RLHF):
Fine-tune the LLM so that its response distribution directly
maximizes the reward.
® |n both cases, alignment quality heavily depends on the reward
model’s accuracy.



Problem Definition

Problem: Reward Overoptimization or 'Hacking’

® Reward models are trained on finite data and are inherently imperfect.

® This imperfection can lead to reward overoptimization or "hacking’,
where responses receive high rewards due to model flaws.

® Qut-of-distribution(OOD) regions often cause reward models to
misjudge poor responses due to limited data.
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Notation

® (: Vectorized trainable LoRA parameters, 6 = vec(AW)
® D: Training dataset used to learn 0

® Wj: Frozen pretrained weight matrix

® AW = BA: Low-rank update to frozen weights W,

® Ac R"XMNn B g R"™utX"r: |ow-rank matrices

® x: Prompt or input query

® y: LLM-generated response

® y,, yi: Preferred (winner) and less-preferred (loser) response in preference data
® rg(x,y): Reward score for response y to prompt x

® rogap (X, ¥): Reward score from MAP-estimated weights
® A(x,y): Variance of ry(x, y) from Laplace approximation
® r.ai: Evaluation reward model (proxy or gold)

® 7. Response distribution from the reference LLM

® n: Number of responses sampled in Best-of-n

® Klpon = log(n) — ”;nl: KL divergence induced by BoN sampling



Background

Reward Modeling

® |n LLM alignment, human preferences
are typically modeled using a reward
model ry.

® The Bradley-Terry model is defined for
a pair of responses (x, yw) and (x, y/) to
a prompt x:

5'0(X~Yw)

Plyw > yi1) = ero yw) - ero ()

o (ro(x; yw) — ro(x, y1))
® The reward model is learned by

maximizing log-likelihood given a fixed
preference dataset:

max Ex,y,, .y [log o (ra (x, yuw) =ro (x, y1))]

® After learning, BoN sampling or RLHF
can be applied.

Best-of-N (BoN) Sampling

A decoding strategy to align LLM
outputs with a given reward model
without further fine-tuning the LLM
policy.

For any test prompt, BoN samples n
responses, uses the reward model to rank
them, and selects the best one (with the
highest reward).

The KL divergence between the BoN
policy and the reference policy measures
the degree of optimization as n increases:

n—1
KLpon = |0g(l7) - T



Background

Standard LoRA (MAP) Laplace-LoRA (Bayesian LoRA)

® Parameter-efficient fine-tuning ® Applies post-hoc Laplace

for LLMs: keep pretrained
weights Wy fixed, add low-rank
perturbation AW = BA.

Output: h = Wha + BAa where
B ¢ R"outxnlr7 A € R"rXNin

AW is trained as a point
estimate (MAP), used for single
forward pass : AW = AWuap

Predicts using one softmax
output.

MAP models output a single
deterministic score, thus cannot
capture uncertainty, especially
in OOD regions.

approximation to perform
Bayesian inference on LoRA
weights.

Prior: P(0) = N(0, A1) for
0 = vec(AW).

Approximate posterior:
P(Q‘D) ~ ,/\/’(6’1\/|AP7 Z)

Enables epistemic uncertainty
estimates via sampling multiple
0 from posterior — Run multiple
forward passes — Average
softmax outputs



Proposed Method

Laplace-LoRA for Reward Modeling
® Goal: Mitigate reward overoptimization by modeling uncertainty in
reward predictions using Laplace-LoRA.

® Step 1: Train a standard LoRA-based reward model to get point
estimates rg,,.p0 (X, y)-

® Step 2: Apply Laplace approximation post-hoc to obtain posterior:
rQ(X7y) ~ N(reMAP(X7y)7 A(Xa.)/))

® Uncertainty-Aware Reward Penalties:

> Std penalty: Fuda(X,y) = foyae (X, ¥) — ka/N(X, y)
» Var penalty: Far(X,y) = rogape (X, y) — kA(x,y)
® Extension: Can be combined with reward ensembles; apply Laplace to
each model and penalize the average reward.



Experiment Setup

Goal: Evaluate how uncertainty-aware Bayesian reward models affect BoN
sampling and reward overoptimization.

Setup:

® Gold reward model: LLaMA 7B, fine-tuned on human preferences
(AlpacaFarm dataset).

® Proxy reward model: Pythia-70M with LoRA.
® LLM policy: Pythia-1.4B, used to generate responses via BoN sampling.

Procedure:

® For each prompt x, sample n candidate responses y1, ..., y, from
Tref (Y[ %)
® Rank the candidates using the proxy reward model.

® Select the highest-scoring response and evaluate it using both the proxy
and the gold reward models.



MAP reward increases with more BoN samples, but gold reward drops — reward hacking.

Laplace (LA) mitigates this with uncertainty penalties (variance/std), especially at high KL.
LA Ens (Laplace + Ensemble) achieves the best overall performance.
Variance-based penalty slightly outperforms std-based under large k.
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Figure 2: reward scores (proxy/gold) for MAP, LA, Ens, LA Ens



Thank youl!



