Beyond the Black Box: A Statistical Model for LLM Reasoning and Inference

Shin Yun Seop August 6, 2025

Seoul national university, statistics, IDEA LAB

1. Introduction

1.1. Motivation

- 2. Text generation in the real work
 - 2.1. The ideal generative text mode
 - 2.2. Real world LLMs
- 3. Embeddings and Prior Approximation
 - 3.1. Continuity of Embedding Mapping
 - 3.2. Prior Approximation
- 4. Text generation and Bayesian Learning
 - 4.1. LLM as Bayesian Learning

Motivation

- Since ChatGPT came out, large language models have drawn a lot of attention. Many studies now ask why they can handle tasks like in-context learning.
- This paper uses a Bayesian model to explain these behaviors.
- Bayesian models are natural here since tokens are being generated based on the past training data (prior) and the prompts (new observations which updates the prior).

- 1. Introduction
 - 1.1. Motivation
- 2. Text generation in the real world
 - 2.1. The ideal generative text model
 - 2.2. Real world LLMs
- 3. Embeddings and Prior Approximation
 - 3.1. Continuity of Embedding Mapping
 - 3.2. Prior Approximation
- 4. Text generation and Bayesian Learning
 - 4.1. LLM as Bayesian Learning

Ideal Generative Text Model

- Probability matrix: each prompt is a row, each token is a column. The cell holds the probability the token comes next.
- Generation is simple. Find the row for the current prompt, sample one token from its multinomial, append it, then jump to the row for the new prompt.
- Example: With prompt "Protein", high-probability tokens include "synthesis" and "shake". Choosing "synthesis" moves us into a biology-centric prompt, while "shake" shifts the model toward fitness-drink prompt.

Ideal Generative Text Model

Figure 1: Example of ideal multinomial probability matrix

Real-World LLM

- The ideal probability matrix is very large. Far too big to store, and get its element is almost impossible.
- LLMs handle this by compressing the huge matrix into learned weights: a prompt → embedding → probability which is a parameter of multinomial distribution.
- It works fine for prompts that look like the training data, but for unfamiliar prompts the model may give odd probabilities.

Ideal model vs Real-World Models

	Ideal probability matrix	Real-world LLM	
Storage		Keeps no full rows. Prompt \rightarrow embedding e, then $p = \operatorname{softmax}(We + b)$.	
Outcome	'	One-token or whitespace change \Rightarrow e_1 \approx e_2 \Rightarrow $p_1 \approx p_2$.	
Property	Assumes infinite memory		

- 1. Introduction
 - 1.1. Motivation
- 2. Text generation in the real world
 - 2.1. The ideal generative text model
 - 2.2. Real world LLMs
- 3. Embeddings and Prior Approximation
 - 3.1. Continuity of Embedding Mapping
 - 3.2. Prior Approximation
- 4. Text generation and Bayesian Learning
 - 4.1. LLM as Bayesian Learning

Notation

- v: Total number of token (In this paper assume v = 50,000).
- \mathcal{E} : Embedding space (In this paper assume $\mathcal{E} = \mathbb{R}^r$ for some r).
- $\mathcal{P} \subset \mathbb{R}^{\nu}$: Space of probability vector such that if $p = (p_1, \dots, p_{\nu}) \in \mathcal{P}$ then $p_j \geq 0$ for all $j = 1, \dots, \nu$ and $p_1 + \dots + p_{\nu} = 1$.
- $T: \mathcal{E} \to \mathcal{P}:$ Convexity preserving mapping (In this case decoder part of LLM).

Continuity of Embedding Mapping

Theorem 1 (Continuity)

If the mapping $T: e \mapsto p(e)$ from a prompt embedding $e \in \mathcal{E}$ to its next-token probability $p(e) \in \mathcal{P}$ is *convexity preserving* and *bounded*, then T is **continuous**.

- This means that small changes in e cause only small changes in p(e).
- This continuity property lets the compressed model generalize beyond seen prompts and forms the basis for the Bayesian update.

Dirichlet Mixture Prior

Theorem 2 (Dirichlet Mixture Approximation)

Any continuous bounded prior u(P) over \mathcal{P} can be approximated by a **finite mixture of Dirichlet distributions**:

$$u(P) \approx \sum_{k=1}^{n} b_k \operatorname{Dir}(P \mid \alpha_k), \qquad b_k \geq 0, \ \sum b_k = 1.$$

- It is the conjugate prior for the multinomial likelihood, so posterior updates are easy and have a closed form solution.
- This means mixing a few Dirichlet components can mimic any shape, from very flexible distribution to almost uniform distribution.
- After seeing new tokens, you just add their counts; the result is still a Dirichlet mixture, so updating stays easy and fast.

- 1. Introduction
 - 1.1. Motivation
- 2. Text generation in the real world
 - 2.1. The ideal generative text model
 - 2.2. Real world LLMs
- 3. Embeddings and Prior Approximation
 - 3.1. Continuity of Embedding Mapping
 - 3.2. Prior Approximation
- 4. Text generation and Bayesian Learning
 - 4.1. LLM as Bayesian Learning

LLM as Bayesian Learning

Figure 2: Bayesian updating of next token multinomial probability.

LLM as Bayesian Learning

- Prior. Prompt embeddings correspond to an approximation of a Dirichlet–mixture prior $u(P) = \sum_k b_k \operatorname{Dir}(P \mid \alpha_k)$.
- **Likelihood.** *n* tokens inside the prompt give counts $\mathbf{c} = (c_1, \dots, c_V)$.
- ullet Posterior update. By Conjugate property $\, lpha_k \leftarrow lpha_k + {f c}. \,$

In-Context-Learning in Example

- Now think simple example of explain how do In-Context learning in LLM.
- For simplicity we think binary target case.
- Example1 : I like Jisu, because she is bad girl.
- Example2: I like Minsu, because he is bad boy.
- Example2 : I like Minho, because he is bad person.
- Q: I like Juho, because he is { } . (Target: nice, bad)

In-Context-Learning in Example

• In this case we can model

nice |
$$p \sim B(3,p)$$
 and $p \sim Beta(\alpha, \beta)$.

	Prior (α, β)	Observed (nice, bad)	Posterior mean
Strong prior	(5, 1)	(0,3)	$5/(5+1+3) \approx 0.56$
Weak prior	(0.3, 0.01)	(0,3)	$0.3/(0.3+0.01+3) \approx 0.09$

$$E[\mathsf{nice} \mid \mathsf{Observed}] \, = \, \frac{\alpha}{\alpha + \beta + n}, \quad E[\mathsf{bad} \mid \mathsf{Observed}] = \frac{\beta + n}{\alpha + \beta + n}.$$

- Weak prior: even n = 3 flipped observation, the posterior is varying with prior.
- Strong prior: requires many observed prompts and slow adaptation.
- Authors argue that larger model tend to have many more parameters and during training they are acquiring more general knowledge so this results in small $\alpha + \beta$ (Why??).

Summary

- This paper formalizes how real-world LLMs work and proves a continuity theorem, showing that prompt embeddings map smoothly to multinomial token distributions. I.e., even a slight change in the prompt should not cause a sudden shift in the predicted token distribution.
- Bayesian Explanation: Rethink next-token prediction as a Bayesian posterior (Dirichlet-mixture prior + prompt likelihood).

Appendix: Llama example

Natural Language Query	DSL representation
Tournament0 team with best win loss record	{'orderby': ['win_loss_ratio'], 'toss': ['lost'],
after losing the toss	'tournament': ['Tournament0'], 'type':
	['team']}
lowest team total	{'groupby': ['innings'], 'orderby': ['runs'],
	'sortorder': ['reverse'], 'type': ['team']}
biggest Tournament0 total in defeat	{'groupby': ['innings'], 'orderby': ['runs'],
	'result': ['loss'], 'tournament': ['Tourna-
	ment0'], 'type': ['team']}
highest scores by Team0	{'groupby': ['innings'], 'orderby': ['runs'],
	'team': ['Team0'], 'type': ['team']}

Figure 3: Few shot examples of NL \rightarrow DSL(Domain Specific Language)

Appendix: Llama example

```
Tournament0 team with best win loss record after losing the toss ('orderby': ['win_loss_ratio'], 'toss': ['lost'], 'tournament': ['Tournament0'], 'type': ['team']) lowest team total ('groupby': ['innings'], 'orderby': ['runs'], 'sortorder': ['reverse'], 'type': ['team']) loggest Tournament0 total in defeat ('groupby': ['innings'], 'orderby': ['runs'], 'result': ['loss'], 'tournament': ['Tournament0'], 'type': ['team']) loghest scores by Team0 ('groupby': ['innings'], 'orderby': ['runs'], 'team': ['Team0'], 'type': ['team']) losing team total in Tournament0 ('groupby': ['innings'], 'orderby': ['runs'], 'result': ['loss'], 'tournament': ['Tournament0'], 'type': ['team'])
```

Figure 4: Probability: Red \leq Yellow \leq Green. The first four are the few-shot examples, and the last one is our query.