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Motivation

• Since ChatGPT came out, large language models have drawn

a lot of attention. Many studies now ask why they can handle

tasks like in-context learning.

• This paper uses a Bayesian model to explain these behaviors.

• Bayesian models are natural here since tokens are being

generated based on the past training data (prior) and the

prompts (new observations which updates the prior).
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Ideal Generative Text Model

• Probability matrix: each prompt is a row, each token is a

column. The cell holds the probability the token comes next.

• Generation is simple. Find the row for the current prompt,

sample one token from its multinomial, append it, then jump

to the row for the new prompt.

• Example: With prompt “Protein”, high-probability tokens

include “synthesis”and “shake”. Choosing “synthesis” moves

us into a biology-centric prompt, while “shake” shifts the

model toward fitness-drink prompt.
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Ideal Generative Text Model

Figure 1: Example of ideal multinomial probability matrix
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Real-World LLM

• The ideal probability matrix is very large. Far too big to store,

and get its element is almost impossible.

• LLMs handle this by compressing the huge matrix into learned

weights: a prompt → embedding → probability which is a

parameter of multinomial distribution.

• It works fine for prompts that look like the training data, but

for unfamiliar prompts the model may give odd probabilities.
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Ideal model vs Real-World Models

Ideal probability matrix Real-world LLM

Storage Stores every prompt as its row

(“The catis” vs “The cat is”

live in different rows).

Keeps no full rows. Prompt

→ embedding e, then p =

softmax(We + b).

Outcome Rows are independent, so

probability vectors p1, p2 can

differ arbitrarily.

One-token or whitespace

change ⇒ e1 ≈ e2 ⇒
p1 ≈ p2.

Property Assumes infinite memory
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Notation

• v : Total number of token (In this paper assume v = 50, 000).

• E : Embedding space (In this paper assume E = Rr for some

r).

• P ⊂ Rv : Space of probability vector such that if

p = (p1, · · · , pv ) ∈ P then pj ≥ 0 for all j = 1, · · · , v and

p1 + · · ·+ pv = 1.

• T : E → P : Convexity preserving mapping (In this case

decoder part of LLM).
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Continuity of Embedding Mapping

Theorem 1 (Continuity)

If the mapping T : e 7→ p(e) from a prompt embedding e ∈ E to

its next-token probability p(e) ∈ P is convexity preserving and

bounded, then T is continuous.

• This means that small changes in e cause only small changes

in p(e).

• This continuity property lets the compressed model generalize

beyond seen prompts and forms the basis for the Bayesian

update.
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Dirichlet Mixture Prior

Theorem 2 (Dirichlet Mixture Approximation)

Any continuous bounded prior u(P) over P can be approximated

by a finite mixture of Dirichlet distributions:

u(P) ≈
n∑

k=1

bk Dir(P | αk), bk ≥ 0,
∑

bk = 1.

• It is the conjugate prior for the multinomial likelihood, so

posterior updates are easy and have a closed form solution.

• This means mixing a few Dirichlet components can mimic any

shape, from very flexible distribution to almost uniform

distribution.

• After seeing new tokens, you just add their counts; the result

is still a Dirichlet mixture, so updating stays easy and fast.
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LLM as Bayesian Learning

Figure 2: Bayesian updating of next token multinomial probability.
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LLM as Bayesian Learning

• Prior. Prompt embeddings correspond to an approximation of a

Dirichlet–mixture prior u(P) =
∑

k bk Dir(P | αk ).

• Likelihood. n tokens inside the prompt give counts c = (c1, . . . , cV ).

• Posterior update. By Conjugate property αk ← αk + c.
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In-Context-Learning in Example

• Now think simple example of explain how do In-Context

learning in LLM.

• For simplicity we think binary target case.

• Example1 : I like Jisu, because she is bad girl.

• Example2 : I like Minsu, because he is bad boy.

• Example2 : I like Minho, because he is bad person.

• Q: I like Juho, because he is { } . (Target: nice, bad)
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In-Context-Learning in Example

• In this case we can model

nice | p ∼ B(3,p) and p ∼ Beta(α, β).

Prior (α, β) Observed (nice, bad) Posterior mean

Strong prior (5, 1) (0, 3) 5/(5 + 1 + 3) ≈ 0.56

Weak prior (0.3, 0.01) (0, 3) 0.3/(0.3 + 0.01 + 3) ≈ 0.09

E [nice | Observed] =
α

α+ β + n
, E [bad | Observed] =

β + n

α+ β + n
.

• Weak prior: even n = 3 flipped observation, the posterior is varying with prior.

• Strong prior: requires many observed prompts and slow adaptation.

• Authors argue that larger model tend to have many more parameters and during

training they are acquiring more general knowledge so this results in small α+ β

(Why??).
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Summary

• This paper formalizes how real-world LLMs work and proves a

continuity theorem, showing that prompt embeddings map

smoothly to multinomial token distributions. I.e., even a slight

change in the prompt should not cause a sudden shift in the

predicted token distribution.

• Bayesian Explanation: Rethink next-token prediction as a

Bayesian posterior (Dirichlet-mixture prior + prompt

likelihood).
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Appendix: Llama example

Figure 3: Few shot examples of NL → DSL(Domain Specific Language)

18



Appendix: Llama example

Figure 4: Probability: Red ≤ Yellow ≤ Green. The first four are the

few-shot examples, and the last one is our query.
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