Lab Seminar Jeong Hankyo

Topics

Definition of ontology

• Neches, 1991,

"An ontology defiens the basic terms and relations comprising the vocabulary of a topic area as well as the rules for combining terms and relations to define extensions to the vacabulary."

• Gruber, 1993,

"An ontology is an explicit specification of a conceptualization."

• Borst, 1997,

"Ontologies are defined as a formal specification of a shared conceptualization."

• Studer et al., 1998

Definition of ontology

• Neches, 1991,

"An ontology defiens the basic terms and relations comprising the vocabulary of a topic area as well as the rules for combining terms and relations to define extensions to the vacabulary."

• Gruber, 1993,

"An ontology is an explicit specification of a conceptualization."

• Borst, 1997,

"Ontologies are defined as a forma" specification of a shared conceptualization." ontology should be machine-readable. • Studer et al., 1998

Definition of ontology

• Neches, 1991,

"An ontology defiens the basic terms and relations comprising the vocabulary of a topic area as well as the rules for combining terms and relations to define extensions to the vacabulary."

• Gruber, 1993,

"An ontology is an explicit specification of a conceptualization."

• Borst, 1997,

"Ontologies are defined as a formal specification of a shared conceptualization." Means that the type of concepts used, and the restrictions Studer et al. on their use are explicitly defined.

Definition of ontology

• Neches, 1991,

"An ontology defiens the basic terms and relations comprising the vocabulary of a topic area as well as the rules for combining terms and relations to define extensions to the vacabulary."

• Gruber, 1993,

"An ontology is an explicit specification of a conceptualization."

• Borst, 1997,

"Ontologies are defined as a formal specification of a shared conceptualization." consensual knowledge, that is, it is not the privilege of some individual, but accepted by a group.

• Studer et al., 1998

Definition of ontology

• Neches, 1991,

"An ontology defiens the basic terms and relations comprising the vocabulary of a topic area as well as the rules for combining terms and relations to define extensions to the vacabulary."

• Gruber, 1993,

"An ontology is an explicit specification of a conceptualization."

 Borst, 1997, *"Ontologies are defined as a formal spworldaby/having/identified.thetrelevant/concepts of*

that phenomenon

• Studer et al., 1998

Component of ontology

- Class (= concepts)
 - Describe concepts in the domain. (Ex, a class of wines represents all wines)
 - Specific wines are instances of this class.
 - A class can have subclass (Ex, red wines, white wines, rese wines ...)
- Slot (= roles or properties)
 - Describe of classes and instances
 - 'Chateau Lafite Rothschild Pauillac' wine has a full body
 - *'Chateau Lafite Rothschild Pauillac'* wine produced by the *'Chateau Lafite Rothschild'* winery.
 - Body: full, maker: 'Chateau Lafite Rothschild' winery
- Restrictions (= facets)
 - Constraints applied to slots.
 - (Ex, the maker slot must have exactly one instances of the class winery \rightarrow minCardinality=1
- Instances
 - Concrete examples of a class.

: Property (Slot)

Determine the domatin and scope of the ontology

- What is the domain that the ontology will cover?
- For what we are going to use the ontology?
- For what types of questions the information in the ontology should provide answers?
- Who will use and maintain the ontology?

Determine the domatin and scope of the ontology

- What is the domain that the ontology will cover? : wine and food
- For what we are going to use the ontology? :
- For what types of questions the information in the ontology should provide answers? :
- Who will use and maintain the ontology?

Determine the domatin and scope of the ontology

- What is the domain that the ontology will cover? : wine and food
- For what we are going to use the ontology? : suggest good combinations of wines and food.
- For what types of questions the information in the ontology should provide answers?
- Who will use and maintain the ontology?

Determine the domatin and scope of the ontology

- What is the domain that the ontology will cover? : wine and food
- For what we are going to use the ontology? : suggest good combinations of wines and food
- For what types of questions the information in the ontology should provide answers?¹⁾ :
- Who will use and maintain the ontology?

What wine characteristics should I consider when choosing a wine?
 Is Bordeaux a red or white wine?
 Does Cabernet Sauvignon go well with seafood?
 What is the best choice of wine for grilled meat? ...

1) Competency question

Gruninger, Fox 1995, "Methodology for the Design and Evaluation of Ontologies"

Determine the domatin and scope of the ontology

- What is the domain that the ontology will cover? : wine and food
- For what we are going to use the ontology? :suggest good combinations of wines and food
- For what types of questions the information in the ontology should provide answers? :
- Who will use and maintain the ontology? :
 Users: restaurant customers, wine recommendation systems, NLP applications

Maintainers: sommeliers, ontology engineers, wine retailers, NLP developers

What wine characteristics should I consider when choosing a wine?
 Is Bordeaux a red or white wine?
 Does Cabernet Sauvignon go well with seafood?
 What is the best choice of wine for grilled meat? ...

Develop an ontology

1. Define the classes and the class hierarchy

2. Define the properties of classes – slots

3. Define the facets of the slots

4. Create instances

1. Define the classes and the class hierarchy

• Wine

• Food

1. Define the classes and the class hierarchy

- Wine
 - White wine
 - Red wine
 - Rose wine

• Food

1. Define the classes and the class hierarchy

- Wine
 - White wine
 - Red wine
 - Syrah
 - Red Burgundy
 - Cabernet Sauvignon
 - Rose wine
- Food

- 1. Define the classes and the class hierarchy
 - Wine
 - White wine
 - Red wine
 - Syrah
 - Red Burgundy
 - Cabernet Sauvignon
 - Rose wine
 - Food

2. Define the properties of classes – slots

- Intrinsic: color, body, flavor, ...
- Extrinsic: name, area, ...

- Part-of: e.g., MerlotGrape partOf ChateauMargaux2009
- Relationship: Wine hasMaker Winery Wine madeFromGrape Grape

3. Define the facets of the slots

Slot cardinality

• how many values a slot can have.

Slot-value type

- String:
- Number: Float, Integer,...
- Boolean: true, false
- Enumerated: specify a list of specific allowed values for the slot.
- Instance

Domain and range of a slot

- Domain: the class the slot is attached to
- Range: the type of values it can take

WineBody

4. Create instances

(1) Choosing a calss (Beaujolais)

(2) Creating an individual instance of that class (Chateau_Morgon_Beaujolais)

(3) filiing in the slot values.

- Body: Light
- Color: Red
- Flavor: Delicate
- Sugar: Dry
- ...

4. Create instances

Dest	inplion. Deaujoiais
Equ	ivalent To 🛨
Sub	Class Of 🕂
	hasBody value Light
	hasColor value Red
	hasFlavor value Delicate
	hasSugar value Dry
	Wine
Gen	eral class axioms 🛨
Sub	Class Of (Anonymous Ancestor)
	hasSugar exactly 1 WineSugar
	hasFlavor exactly 1 WineFlavor
	hasColor exactly 1 WineColor

hasBody exactly 1 WineBody

Instances 🔂

ChateauMorgonBeaujolais

Protégé

Reasoner (DL Query / SPARQL Query)

1. What wine characteristics should I consider when choosing a wine?

DL Query (Description Logic)	SPARQL Query
Ducyy (class e xpression) wine Execute Add to ontology Ouery results Direct superclasses (2 of 2) PotableLiquid Region Direct superclasses (1 d of 14) AmericanWine DessetWine DessetWine Gamay Gamay Gamay Gamay SweetWine TableWine BancroftChardonnay WhiteWine TableWine ChateauDPeleursaultMeursault ChateauDPeleursaultMeursault ChateauDPeleursaultMeursault ChateauMorgonBaaujolais ChateauMorgonBaaujolais	Query: SELECT DISTINCT ?property WHERE { wine:Wine rdfs:subClassOf ?restriction . ?restriction owl:onProperty ?property . } Output: hasBody hasFlavor locatedln hasSugar hasColor hasMaker madeFromGrape

Reasoner (DL Query / SPARQL Query)

2. Is Bordeaux a red or white wine?

DL Query (Description Logic)	SPARQL Query				
DL query: Query (class expression) Bordeaux Execute Add to ontology Query results Direct superclasses (1 of 1) FrenchWine Direct subclasses (2 of 2) RedBordeaux WhiteBordeaux	Query: SELECT ?instance ?type ?color ?flavor ?body WHERE { ?instance rdf:type ?type . ?type rdfs:subClassOf* wine:Bordeaux . OPTIONAL { ?instance wine:hasColor ?color . } OPTIONAL { ?instance wine:hasFlavor ?flavor . } OPTIONAL { ?instance wine:hasBody ?body . } } Output:				
Instances (4 of 4) ChateauChevalBlancStEmilion ChateauDYchemSauterne ChateauLafiteRothschildPauillac ChateauMargaux	instancetypecolorChateauDYchemSauterneSauternesRedChateauChevalBlancStEmilionStEmilionRedChateauMargauxMargauxRedChateauLafiteRothschildPauillacPauillacRed				

S-100, Ontology

Suhyun Park, 2010, "S-100 Metadata Conversion Design of the OWL-based Ontology"

S-100 Metadata

S-100 Metadata

Discovery metadata

ISO 19115 profile metadata

S-100 Metadata

S100_CataloguePointofContact

■Role Name	Name↩	Description↩	Mult↩	Туре⊲	Remarks↩
Class∉	S100_CataloguePointOfContact⇔	Contact details of the issuer of this exchange catalogue	- - -	- → -	-,-⊐
Attribute	organization	The organization distributing this exchange catalogue	1↩	CharacterString ^₄	This could be an individual producer, value added reseller, etc.↩
Attribute↩	phone↩	The phone number of the organization	01↩	CI_Telephone↩	ę
Attribute↩	address⇔	The address of the organization	01↩	CI_Address↩	<i>چ</i>

S100_Dataset↩

Role Name⊲	Name⇔	Description↩	Mult↩	Туре⊲	Remarks↩
Class↩	S100_Dataset	تې تې	-4	-47	-,
Role⇔	composedOf⇔	An exchange set is composed of 0 or more datasets	0*⇔	-~ ³	с _{>}
Role⊲	datasetCatalogue↩	Catalogue which is related to this dataset	0*⇔	-¢ ⁻	4

S-100 Metadata Ontology

ISO 19115 Metadata

S-100 Discovery Metadata

Global Ontology

Reza Asgari et al. 2015, "An ontology-based approach for integrating heterogeneous databases"

Problem

Traditional

DB1

Calculator_model	Calculator_type	
M19	Programmer	
N34	Scientific	

DB2			
Device_number	Category		
M19	Programmer		
N34	Scientific		

- Traditional schema-based integration methods struggle when database fidels differ in naming. (e.g, "Calculator_model" vs "Device_number")
- For integration, require manual semantic matching

Problem

Proposal

DB_1	Relation	DB_2
Calculator_model	synOf	Device_number
Calculator_type	synOf	Category

- Explicitly defines semantic relationships, facilitating automatic and accurate integration.
- User can unified queries, and the system automatically matches fields semantically

Hybrid architecture

The rules for constructing the ontology

- Deifne ontology "O" as: O = {C, A, I, R}
 C: a set of concepts.
 A: a set of attributes of concepts.
 I: a set of instances.
 R: a set of all relations that exist between 'C', 'A' and 'I'.
- *R* = {*isA, synOf, partOf, atr, val*}

isA: Inheritance relations: 'CPU isA Processor' synOf: Synonyms relations: 'PC synOf PersonalComputer' partOf: Aggregation relations: 'Keyboard partOf Computer' atr: showing attributes of a concept: 'atr(CPU, company)' val: value of attribues: 'val(company, 'Intel', cpu_3034) cpu_3034's value of company is "Intel"

The rules for constructing the ontology

Туре	Model	Name
LCD	S1227i	Desktop
Single processor	Dell	Notebook
Usb port	L11h23	Keyboard
Programmer	M19	Calculator
LED	121g2	Monitor
Scientific	N34	Calculator
Desktop pc	Intel	PC
Multi processor	IBM	Computer
Scientific	N45	Calculator

Table 1. Sample table that contains product information.

Part of product ontology graph for Table 1.

Integration

- Constructing one ontology for each database.
- Constructing mapping function(here, called transformer) as an intermediate language and as a communication bridge among the local ontologies and the universe ontology
- Construct universal Ontology

Response to the user's query

Query: "Show me the IDs of all products where the Name is 'Laptop' and the Color is 'Silver.'

1. The query is encoded from Universal ontology as:

F = (c = Product, a = {Name, Color}, i = {Name='Laptop', Color='Silver'}, s = {product_name ↔ name, color ↔ hue}, acc)

2. After verigying acc, strip is away:

F' = (c = Product, a = {Name, Color}, i = {Name='Laptop', Color='Silver'}, s = {product_name ↔ name, color ↔ hue})

Response to the user's query

3. Transformer (mapping): convert F' into the SQL query.

Transformer	Semantic mapping	Sub-query
T1	Name ↔ product_name Color ↔ color	SELECT product_id FROM DB1 WHERE product_name='Laptop' AND color='Silver'
T2	Name ↔ name	SELECT id FROM DB2 WHERE name='Laptop' AND
	Color ↔ hue	hue='Silver'

Response to the user's query

4. Local ontology \rightarrow each DB \rightarrow Return response

5. Filtering and output F"

F["]_{T1}={101,102}, F["]_{T2} ={201,202}

6. The universal Ontology merges both sets into {101, 102, 201, 202} and final return to the user

Response to the user's query

4. Local ontology \rightarrow each DB \rightarrow Return response

5. Filtering and output F"

F["]_{T1}={101,102}, F["]_{T2} ={201,202}

6. The universal Ontology merges both sets into {101, 102, 201, 202} and final return to the user

감사합니다.