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Introduction

This paper is about parameterized density estimation for cases
where the partition function is hard to compute to normalize
unnormalized models.



Introduction

We want to estimate the joint probability density of variables

from data.

¢ Density estimation: the process of using data to approximate the
joint probability distribution.

e \We estimate the possible values of variables and how likely they
are.

e Examples:
® Detecting network hack attempts: If a new hack is not in
training data, a classifier may miss it. By treating data outside the
normal density as hack attempts, we can catch new types.
® Generating diverse images: If we estimate an image distribution,
we can sample and create images not in the data.



Introduction

We define density estimation as an unnormalized function model
with a finite number of parameters.

® Unnormalized function estimation:

p(x) o< exp(—E(x; 6))

® x: observed data

p(x): data density function (unnormalized)

E(x; 0): potential function

Z = [exp(—E(x)) dx: partition function (normalizer)
® Normalized models:
® They must integrate to 1, so methods to compute density are
limited.
® Examples: Gaussian mixtures, kernel density estimation.



Introduction

We define density estimation as an unnormalized model with

finite parameters.

® Problem: To make an unnormalized function a density, we need a
partition constant so the integral is 1. If it has no closed-form, it is
very hard.

¢ Existing ways to avoid partition constants:

® Approximate partition with importance sampling or score matching.
® There is a trade-off between accuracy and computing cost (MCMC
sampling, second derivatives).

® This paper’s solution: Treat the partition constant as a
parameter and learn it from data.

® First-order gradient on 6 costs O(d) for input dimension d.



Key techniques: Importance sampling and score matching.

® Importance sampling:

_E(x —E(x N
Z:/ef(x)dxz/%q(x)dx:EM[ - ] Z

—E(x;)

® g(x): easy-to-sample distribution, e.g. Gaussian or exponential.

® Score matching:
sp(x) = Vi Inp(x;0) = =V E(x;0) — VxInZ,

J(0) = 3Edatalllso(x) = Saata(¥)[?] = Edatal5 [ VXE > + DxE]
® V., A,: first and second derivatives wrt x.

® J(): objective to minimize.




Introduction

This paper’s solution: Train the partition constant via logistic
regression.

® Train a logistic model to estimate density ratios of two
distributions.

® Use it to estimate the ratio between an easy reference distribution
and our unnormalized model plus constant.

® Treat the constant z as a logistic regression parameter.



Main Framework

Convert to binary classification of data vs noise and use logistic
regression to get density ratio.

Posterior probability: P(C=1|u)= Pm(u)m _ 1
pm(u)ms + polu)mo 1 422l
1
hu0) = PIC =11 uib) = T o=ctumy

G(u;0) = Inpm(u; 0) — In pp(u)

® C = I(u € X): data/noise label.
® 0: logistic parameters, v = T4/ T,: ratio of data to noise samples.

® pm, pn: densities of data and noise, mo = P(C = 0),m = P(C = 1).



Main Framework

Logistic regression and how ratio emerges:

h(u; 0) = 1—1—1/(;‘1—G(“;9)’ G(u;0) = Inpm(u; 0) — In pp(u)
h(u;0) uf) . Pm(u)
In T hw ) G(u;0) = eCld) (1)

® X: data, Y: noise, u € U= XUY is asample.
® C = I(u € X): data/noise.

® 0: logistic parameters, v = T4/ T,.

Pm, Pn: densities of data and noise.



Main Framework

Log-likelihood for the binary problem:

Tg+Th
00)= > [CeInP(Ce =1|ug; 0) + (1 = C¢)In P(Cy = O|uy; )]

t=1

Ty Th
= In[h(xe; 0)] + > In[1 — h(ye; 0)].
t=1 t=1

Minimizing negative log-likelihood makes h(u) match P(C = 1|u) and
recovers the density ratio.

® t: index of data or noise sample.
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Main Framework

Train the partition constant as part of the model. Density model
form:

Inpm(u; 0) = Inpl(u;a) + ¢, 6= (a,c)

Logistic objective:

Td Th
1 1
Jr(0) = T Z In h(xe; 0) + T Z In[1 — h(y:; 6)].
t=1 t=1
After training, we get the density ratio G(u; 0) without needing Z
explicitly.

® pS(u;a): unnormalized model, c: normalization parameter.
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Main Framework

Theoretical guarantees.

® Theorem 1 (Uniqueness): As n — oo, the maximizer of the NCE
objective is unique and matches the true log-density.

® Theorem 2 (Consistency): Under regular conditions, the estimated
parameters converge to the true ones.

® Theorem 3 (Asymptotic normality): As n — oo, the parameter
error distribution is normal.

e Corollary 4: MSE converges to tr(X)/ T4, so more noise samples
improve stability.
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Main Framework

Further practical results:

e Corollary 5: As v — oo, covariance ¥ is independent of noise
choice.

e Corollary 6: As v — oo, NCE reaches the Cramér—Rao lower
bound (optimal variance).

® Corollary 7: If noise matches data, X is minimized (guides noise
selection).
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Experiment

Experiments:

o Verify NCE properties (consistency, minimal variance).

® Compare with other unnormalized methods (error vs time).

® Model: estimate parameters of unnormalized Gaussian.

® Simulated data: Gaussian and Laplace distributions.
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Experiment

Verifying theoretical properties:
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(a) Prediction of the MSE (b) Asymptotic behavior

® (a) Consistency: MSE decreases as sample size grows.
¢ (b) Minimal variance: noise ratio up gives asymptotic variance
drop to MLE.
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Experiment

Comparison with other methods (error vs time):

log10 s qErTar
log10 sqErar

45 5 1 15

b5 1 1 25 3 35
Time till convergence [log10 <]

5 2 25 3 35
Time il converganee [log10 5]

(a) Sources following a Laplacian density

® (a) NCE (red) has lowest error for given time.

® (b) Error distribution at fixed noise ratio.
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Conclusion

e NCE offers high flexibility with low compute cost, making it useful
for high-dimensional data like images and videos.
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