
Noise-Contrastive Estimation of Unnormalized
Statistical Models

Kyunseon Lee

Published: February 2012

1



Introduction

This paper is about parameterized density estimation for cases
where the partition function is hard to compute to normalize
unnormalized models.
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Introduction

We want to estimate the joint probability density of variables
from data.

• Density estimation: the process of using data to approximate the
joint probability distribution.

• We estimate the possible values of variables and how likely they
are.

• Examples:
• Detecting network hack attempts: If a new hack is not in

training data, a classifier may miss it. By treating data outside the
normal density as hack attempts, we can catch new types.

• Generating diverse images: If we estimate an image distribution,
we can sample and create images not in the data.
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Introduction

We define density estimation as an unnormalized function model
with a finite number of parameters.

• Unnormalized function estimation:

p(x) ∝ exp(−E (x ; θ))

• x : observed data
• p(x): data density function (unnormalized)
• E (x ; θ): potential function
• Z =

∫
exp(−E (x)) dx : partition function (normalizer)

• Normalized models:
• They must integrate to 1, so methods to compute density are

limited.
• Examples: Gaussian mixtures, kernel density estimation.
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Introduction

We define density estimation as an unnormalized model with
finite parameters.

• Problem: To make an unnormalized function a density, we need a
partition constant so the integral is 1. If it has no closed-form, it is
very hard.

• Existing ways to avoid partition constants:
• Approximate partition with importance sampling or score matching.
• There is a trade-off between accuracy and computing cost (MCMC

sampling, second derivatives).

• This paper’s solution: Treat the partition constant as a
parameter and learn it from data.

• First-order gradient on θ costs O(d) for input dimension d .
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Key techniques: Importance sampling and score matching.

• Importance sampling:

Z =

∫
e−E(x)dx =

∫
e−E(x)

q(x)
q(x)dx = Ex∼q

[e−E(x)

q(x)

]
≈ 1

N

N∑
i=1

e−E(xi )

q(xi )

• q(x): easy-to-sample distribution, e.g. Gaussian or exponential.

• Score matching:

sθ(x) = ∇x ln p(x ; θ) = −∇xE (x ; θ)−∇x lnZ ,

J(θ) = 1
2Edata[∥sθ(x)− sdata(x)∥2] = Edata[

1
2∥∇xE∥2 +∆xE ]

• ∇x ,∆x : first and second derivatives wrt x .

• J(θ): objective to minimize.
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Introduction

This paper’s solution: Train the partition constant via logistic
regression.

• Train a logistic model to estimate density ratios of two
distributions.

• Use it to estimate the ratio between an easy reference distribution
and our unnormalized model plus constant.

• Treat the constant z as a logistic regression parameter.
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Main Framework

Convert to binary classification of data vs noise and use logistic
regression to get density ratio.

Posterior probability: P(C = 1 | u) = pm(u)π1

pm(u)π1 + pn(u)π0
=

1

1 + ν pn(u)
pm(u)

h(u; θ) = P(C = 1 | u; θ) = 1
1 + νe−G(u;θ)

,

G (u; θ) = ln pm(u; θ)− ln pn(u)

• C = I (u ∈ X ): data/noise label.

• θ: logistic parameters, ν = Td/Tn: ratio of data to noise samples.

• pm, pn: densities of data and noise, π0 = P(C = 0), π1 = P(C = 1).
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Main Framework

Logistic regression and how ratio emerges:

h(u; θ) =
1

1 + νe−G(u;θ)
, G (u; θ) = ln pm(u; θ)− ln pn(u)

ln
h(u; θ)

1 − h(u; θ)
= G (u; θ) ⇒ eG(u;θ̂) ≈ pm(u)

pn(u)

• X : data, Y : noise, u ∈ U = X ∪ Y is a sample.

• C = I (u ∈ X ): data/noise.

• θ: logistic parameters, ν = Td/Tn.

• pm, pn: densities of data and noise.
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Main Framework

Log-likelihood for the binary problem:

ℓ(θ) =

Td+Tn∑
t=1

[
Ct lnP(Ct = 1|ut ; θ) + (1 − Ct) lnP(Ct = 0|ut ; θ)

]
=

Td∑
t=1

ln[h(xt ; θ)] +
Tn∑
t=1

ln[1 − h(yt ; θ)].

Minimizing negative log-likelihood makes h(u) match P(C = 1|u) and
recovers the density ratio.

• t: index of data or noise sample.
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Main Framework

Train the partition constant as part of the model. Density model
form:

ln pm(u; θ) = ln p0
m(u;α) + c , θ = (α, c)

Logistic objective:

JT (θ) =
1
Td

Td∑
t=1

ln h(xt ; θ) +
1
Td

Tn∑
t=1

ln[1 − h(yt ; θ)].

After training, we get the density ratio G (u; θ) without needing Z

explicitly.

• p0
m(u;α): unnormalized model, c: normalization parameter.
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Main Framework

Theoretical guarantees.

• Theorem 1 (Uniqueness): As n → ∞, the maximizer of the NCE
objective is unique and matches the true log-density.

• Theorem 2 (Consistency): Under regular conditions, the estimated
parameters converge to the true ones.

• Theorem 3 (Asymptotic normality): As n → ∞, the parameter
error distribution is normal.

• Corollary 4: MSE converges to tr(Σ)/Td , so more noise samples
improve stability.
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Main Framework

Further practical results:

• Corollary 5: As ν → ∞, covariance Σ is independent of noise
choice.

• Corollary 6: As ν → ∞, NCE reaches the Cramér–Rao lower
bound (optimal variance).

• Corollary 7: If noise matches data, Σ is minimized (guides noise
selection).
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Experiment

Experiments:

• Verify NCE properties (consistency, minimal variance).

• Compare with other unnormalized methods (error vs time).

• Model: estimate parameters of unnormalized Gaussian.

• Simulated data: Gaussian and Laplace distributions.
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Experiment

Verifying theoretical properties:

• (a) Consistency: MSE decreases as sample size grows.
• (b) Minimal variance: noise ratio up gives asymptotic variance

drop to MLE.
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Experiment

Comparison with other methods (error vs time):

• (a) NCE (red) has lowest error for given time.

• (b) Error distribution at fixed noise ratio.
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Conclusion

• NCE offers high flexibility with low compute cost, making it useful
for high-dimensional data like images and videos.
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