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Introduction

® This work focus on the criteria of group sufficiency.
> ensures that the conditional expectation of ground-truth label
E[Y | f(X), A] is identical across different subgroups given the predictor’s
output
» e.g., the ML algorithm is used to assess the clinic risk —
E[Y | f(X), A = black] > E[Y | f(X), A = white]
® Aims to propose a novel principled framework for ensuring group
sufficiency, as well as preserving an informative prediction with a small
generalization error.

® In particular, focused on one challenge scenario : the data includes multiple
or even a large number of subgroups, some with only limited samples.



Preliminaries

® X € X :input, Y € {0,1} : label, A € A:sensitive attribute (scalar
discrete random variable)

o (X,Y,A) ~D(X,Y,A)
® f:X — [0,1] : predictor

Group Sufficiency

A predictor f satisfies group sufficiency with respect to the sensitive attribute
AIfE[Y | f(X)] = E[Y | f(X),A].

Group Sufficiency Gap

The group sufficiency gap of a predictor f is defined as

Sufr = Eax[[E[Y [ F(X)] - E[Y | £(X), Al



UB of Group Sufficiency Gap

a-group Bayes Predictor

The a-group Bayes predictor fAijs is defined as

£o25(X) =E[Y | X, A= a]

Theorem

Group sufficiency gap Suff is upper bounded by
Suff S 4EA,X”f — fABayesu
Specifically, if A takes finite value and follows uniform distribution with

D(A = a) = 1/|A|. Then the group sufficiency gap is futher simplified as

a

Sufs < % S Ex(f — 52| | A= ]

This implies that using a probabilistic framework to approximate predictor
f(x) = E(Y | X) results in both group sufficiency gap and prediction error
being small. (under the assumption that £2%*'s are quite similar)



Principled Approach

® Considered a randomized algorithm that learns a predictive distribution Q
over scoring predictors from the data.

» the predictor is drawn from the posterior distribution. freQ
> in the inference, the predictor’s output is formulated as f(X) = E;_,f(X)
® |n practice, we should restrict the predictive distribution @ within a
distribution family Q € Q such as Gaussian distribution.

® We also denote Q) € Q as the optimal prediction-distribution w.r.t. A= a
under BCE loss within Q, that is Q; = arg ming,co E;NQaﬁaBCE(Fa)



Principled Approach

Corollary

The group sufficiency gap Suff in randomized algorithm w.r.t. learned
predictive-distribution Q is upper bounded by

4 . - ~
Sufy < S Ex [|E;NQf(x) — B gp FO + [Ef s FO) = By v sy (X)\]
a

N

< I%\ D_ITV(Q11Q) + TV(Q3IID(y | x,a))]

| Vi Z [VKL(Q311Q) + VKL(@QS TD(Y [ X, A= 2))|




Principled Approach

® Challenge in learning limited samples

> Qr=arg ming,co EfNoaLaBCE(fa)
» each subgroup contains limited number of samples — overfitting

Theorem

Supposing that datasets {Sa}li\l1 with S; = {(x?,y?)}, are i.i.d. sampled from
D(x,y | A= a), the BCE loss is upper bounded by L, Q, € Q is any learned
distribution from dataset S, and Q € Q is any distribution. Then with high
probability >1— 4§ with V6 € (0, 1) we have:

BCE ABCE
\A\ Z f~Qa (fa) < |A| Z f~Qa£ (fa)

log(1/6)
+ e 2o VRL@IQ) + 1SR




Bilevel Objective

log(1/6)
[ Alm

IA\Z £ BCEf)+\/WZ KL(Q.|Q) + L

From the theorem, we can construct bi-level objective as follows:
1 -
in — KL(Q3 1
gggwg (Q:11Q) (1)
@ = arg min {Ez, o, L. (F) + AKL(Qu[IQ)}, Va € A (2)

Upper level objective 1 and Lower level objective 2



Practical Implementations

® Parametric models

» Choose the isotropic gaussian (with diagonal covariance matrix) as the
distribution family Q

» Thus, we need to learn the parameter (0, 0) for Q

» For the subgroup A = a, we learn parameters (0,,0,) for Q;

» For the single predictor f, we use parametric NN models and assume f is
parametrized by a d-dimensional vector w € RY, denoted as fi,

® Gradient Estimation
> KL(Qa||Q) : Since both Q, and Q are factorized Gaussian,

o2[i o2[i]+(04[i]—0]i])?
KL(QallQ) = 3 XiL, {log T3l + BIHELAE 4y
> EFWSNQBKA?CE('?W:;) : re-parametrize w, = 0, + o€, € ~ N(0,1) —

v(ea:Ua)EWaNN(ea»”a)'éaBCE(Fwa) = V(gaa("a)E‘NN(Oa’)‘éfCE(FWa(ea«,”a))

— approximate using Monte Carlo sampling w.r.t €



Practical Implementations

® Algorithm

Algorithm 1 Fair and Informative Learning for Multiple Subgroups (FAMS)

: Input: Parameters w.r.t. distribution Q:(6, o2)., datasets {S,}. a € A.
2 for Sampling a subset of {S, }, where a € A" C A do

### Solving the lower-level ###

4: Fix Q, optimizing the loss w.r.t. Q, = N(6,,o2) through SGD for each a € A’
E;, g, £5(fu.) + AKL(QMIQ)
Obtaining the solution 6: ac A

### Solving the upper-level ###

Fix @ﬂ witha € A’, optimizing the loss w.r.t. @ through SGD: ﬁ > KL(@HQ)
Obtaining updated parameter (8, o'%) in Q

9: end for

10: Return: Parameter of distribution Q: (8, %)

0 N aw

® |nference
» In the inference, use MC method to sample the weights of the NN from
distribution w ~ N (0, 02), then averaging the output w.r.t. different

sampled weights to approximate f(x) = E¢ wa(x).
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® Dataset : Amazon Review
Aim to predict the sentiment (classification) from the review.
Each user has limited number of reviews, ranging from 75 to 400.
® The user is treated as a subgroup.

Draw and fix 200 users from the original dataset, i.e., |A| = 200.

Adopt DistilBERT to learn the embedding with dimension R"®.

Then adopt FW and fwa as the four-layer FCN, where w ~ Q and w, ~ Q.
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® Baselines

» ERM : training a deep model w.o. considering the sensitive attribute

» SNN : stochastic NN through the vanilla training from the whole dataset.
find a predictive distribution Q to minimize ﬁ S, Er g LECE(F).

» EIIL : IRM based approach to promote the group sufficiency

» FSCS : adopted the conditional MI constraint /(A, Y | f(X)) to promote
the sufficiency

» DRO : re-weighting approach to assign the importance of the task

® Since f(X) is continuous, the group sufficiency gap is calculated by
splitting the output of predictor into multiple intervals in [0, 1] and
computing the conditional expectation within each interval.
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Experiment
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(a) Accuracy-Sufy (b) Suf;; on each subgroup (c) Probability Calibration

Figure 3: Amazon Review dataset. (a) Boxplot of accuracy and group sufficiency gap Suf; with
5 repeats: median, 75th percentile and minimum-maximum value. (b) Group sufficiency gap on
subgroup A = a, which is the difference between E[Y'| f(X)] and E[Y'| f(X), A = a]. We visualize
the top-9 users’ group sufficiency gap in ERM, whereas the result for all users is delegated to

the Appendix. (¢) Probability calibration curve over 5 repeats with mean and standard deviation.

ie (f(X),E[Y|f(X)]). The proposed approach demonstrated a consistently improved probability
calibration.
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Appendix : proof of Theorem

Step 1 We first demonstrate the following Lemma, which is based on [50,(60].

Lemma E.1. Let f be a random variable taking value in A and let X ..., X; be | independent
variables with each X, distributed to i over the set Ay. For function gy, : A x Ay — [ar, by,
k=1,...,L Let Ci(f) = EX,~yu, g (f, X) for any fixed value of f. Then for any fixed distribution
won Aandany ), > 0, the following inequality holds with high probability 1 — 5 over the sampling
Xu,..., X, for all distribution p over A.

' 1 5 L
By 3G ~Bry Yokl X0 £ 1 (KL(nHﬁ) D e +1ng§)
k=1 k=1

k=1

Step 2 Then we could use the aforementioned Lemma to demonstrate the main theorem.

Proof. We adopt the lemma for the union of the whole training samples S = Uyc 45,

We set
p=(Qi1®Q: @ Qay) T=(QeQ® - ®Q)
\A| times Al times
We also set X = (z8,39). | = [Am. f = (fi.... fa): oe(f. Xe) =
T PP fa(2?), y?). Since we adopt the binary cross entropy loss, ai = 0 and by = L/(|.A|m),

then with high probability 1 — &, we have:
L hce
A Z Brmq.la o) S 17 Z Ernqula " (fa)

+§<KL(Q. o eQule: A

S[Am

®Q)+ lo( )+

Through the decomposition property of KL divergence, we finally have:

1 - 1 -
WZEMA“ hH= WZE,—NQ‘,LE“ 0l +L\

1 1
m(zﬂ: KL(Qu]|Q) +1log(3))

<L SE, )+ > VREQAQ) + Iy | <E
S Eiate T 2 D+
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