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Introduction

• This work focus on the criteria of group sufficiency.
▶ ensures that the conditional expectation of ground-truth label

E [Y | f (X ),A] is identical across different subgroups given the predictor’s

output
▶ e.g., the ML algorithm is used to assess the clinic risk →

E [Y | f (X ),A = black] ≫ E [Y | f (X ),A = white]

• Aims to propose a novel principled framework for ensuring group

sufficiency, as well as preserving an informative prediction with a small

generalization error.

• In particular, focused on one challenge scenario : the data includes multiple

or even a large number of subgroups, some with only limited samples.
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Preliminaries

• X ∈ X : input, Y ∈ {0, 1} : label, A ∈ A:sensitive attribute (scalar

discrete random variable)

• (X ,Y ,A) ∼ D(X ,Y ,A)

• f : X → [0, 1] : predictor

Group Sufficiency

A predictor f satisfies group sufficiency with respect to the sensitive attribute

A if E[Y | f (X )] = E[Y | f (X ),A].

Group Sufficiency Gap

The group sufficiency gap of a predictor f is defined as

Suff = EA,X [|E[Y | f (X )]− E[Y | f (X ),A]|]
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UB of Group Sufficiency Gap

a-group Bayes Predictor

The a-group Bayes predictor f BayesA=a is defined as

f BayesA=a (X ) = E[Y | X ,A = a]

Theorem

Group sufficiency gap Suff is upper bounded by

Suff ≤ 4EA,X [|f − f BayesA |]

Specifically, if A takes finite value and follows uniform distribution with

D(A = a) = 1/|A|. Then the group sufficiency gap is futher simplified as

Suff ≤
4

|A|
∑
a

EX [|f − f BayesA=a | | A = a]

This implies that using a probabilistic framework to approximate predictor

f (x) ≈ E(Y | X ) results in both group sufficiency gap and prediction error

being small. (under the assumption that f BayesA ’s are quite similar)
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Principled Approach

• Considered a randomized algorithm that learns a predictive distribution Q
over scoring predictors from the data.
▶ the predictor is drawn from the posterior distribution. f̃ ∼ Q
▶ in the inference, the predictor’s output is formulated as f (X ) = Ef̃∼Q f̃ (X )

• In practice, we should restrict the predictive distribution Q within a

distribution family Q ∈ Q such as Gaussian distribution.

• We also denote Q∗
a ∈ Q as the optimal prediction-distribution w.r.t. A = a

under BCE loss within Q, that is Q∗
a = arg minQa∈Q Ef̃∼Qa

LBCE
a (f̃a)
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Principled Approach

Corollary

The group sufficiency gap Suff in randomized algorithm w.r.t. learned
predictive-distribution Q is upper bounded by

Suff ≤
4

|A|
∑
a

EX

[
|Ef̃∼Q f̃ (x)− Ef̃∼Q∗

a
f̃ (x)|+ |Ef̃∼Q∗

a
f̃ (x)− Ef̃∼D(y|x,a) f̃ (x)|

]
≤

4

|A|
∑
a

[TV (Q∗
a ∥Q) + TV (Q∗

a ∥D(y | x , a))]

≤
2
√
2

|A|
∑
a

[√
KL(Q∗

a ∥Q) +
√

KL(Q∗
a ∥D(Y | X ,A = a))

]
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Principled Approach

• Challenge in learning limited samples
▶ Q̂∗

a = arg minQa∈Q Ef̃a∼Qa
L̂BCE
a (f̃a)

▶ each subgroup contains limited number of samples → overfitting

Theorem

Supposing that datasets {Sa}|A|
a=1 with Sa = {(xai , y

a
i )}

m
i=1 are i.i.d. sampled from

D(x , y | A = a), the BCE loss is upper bounded by L, Qa ∈ Q is any learned

distribution from dataset Sa and Q ∈ Q is any distribution. Then with high

probability ≥ 1− δ with ∀δ ∈ (0, 1), we have:

1

|A|
∑
a

Ef̃a∼Qa
LBCE
a (f̃a) ≤

1

|A|
∑
a

Ef̃a∼Qa
L̂BCE
a (f̃a)

+
L√
|A|m

∑
a

√
KL(Qa∥Q) + L

√
log(1/δ)

|A|m
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Bilevel Objective

1

|A|
∑
a

Ef̃a∼Qa
L̂BCE

a (f̃a) +
L√
|A|m

∑
a

√
KL(Qa∥Q) + L

√
log(1/δ)

|A|m

From the theorem, we can construct bi-level objective as follows:

min
Q∈Q

1

|A|
∑
a

KL(Q̄∗
a ∥Q) (1)

Q̄∗
a = arg min

Qa∈Q
{Ef̃a∼Qa

L̂BCE
a (f̃a) + λKL(Qa∥Q)}, ∀a ∈ A (2)

Upper level objective 1 and Lower level objective 2
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Practical Implementations

• Parametric models
▶ Choose the isotropic gaussian (with diagonal covariance matrix) as the

distribution family Q
▶ Thus, we need to learn the parameter (θ, σ) for Q
▶ For the subgroup A = a, we learn parameters (θa, σa) for Q̄∗

a
▶ For the single predictor f̃ , we use parametric NN models and assume f̃ is

parametrized by a d-dimensional vector w ∈ Rd , denoted as f̃w

• Gradient Estimation
▶ KL(Qa∥Q) : Since both Qa and Q are factorized Gaussian,

KL(Qa∥Q) = 1
2

∑d
i=1{log

σ2
a [i ]

σ2[i ]
+

σ2
a [i ]+(θa[i ]−θ[i ])2

σ2[i ]
− 1}

▶ Ef̃wa∼Qa
L̂BCE
a (f̃wa ) : re-parametrize wa = θa + σaϵ, ϵ ∼ N (0, I ) →

∇(θa,σa)Ewa∼N(θa,σa)L̂
BCE
a (f̃wa ) = ∇(θa,σa)Eϵ∼N(0,I )L̂BCE

a (f̃wa(θa,σa))

→ approximate using Monte Carlo sampling w.r.t ϵ
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Practical Implementations

• Algorithm

• Inference
▶ In the inference, use MC method to sample the weights of the NN from

distribution w ∼ N (θ, σ2), then averaging the output w.r.t. different

sampled weights to approximate f (x) = Ef̃w∼Q
f̃w (x).
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Experiment

• Dataset : Amazon Review

Aim to predict the sentiment (classification) from the review.

Each user has limited number of reviews, ranging from 75 to 400.

• The user is treated as a subgroup.

Draw and fix 200 users from the original dataset, i.e., |A| = 200.

• Adopt DistilBERT to learn the embedding with dimension R768.

• Then adopt f̃w and f̃wa as the four-layer FCN, where w ∼ Q and wa ∼ Qa.
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Experiment

• Baselines
▶ ERM : training a deep model w.o. considering the sensitive attribute
▶ SNN : stochastic NN through the vanilla training from the whole dataset.

find a predictive distribution Q to minimize 1
|A|

∑
a Ef∼Q L̂BCE

a (f ).
▶ EIIL : IRM based approach to promote the group sufficiency
▶ FSCS : adopted the conditional MI constraint I (A,Y | f (X )) to promote

the sufficiency
▶ DRO : re-weighting approach to assign the importance of the task

• Since f (X ) is continuous, the group sufficiency gap is calculated by

splitting the output of predictor into multiple intervals in [0, 1] and

computing the conditional expectation within each interval.
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Experiment
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Experiment

Accuracy-Suff curve under different λ in 2
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Appendix : proof of Theorem
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