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Overview

• When machine learning systems are employed for

decision-making, issues of discrimination against specific

groups (e.g., women, black individuals) arise.

• Existing notions of independent group fairness, which consider

only a single sensitive attribute (e.g., gender or race)

independently, fail to adequately capture discrimination

against groups defined by multiple intersecting attributes.

• To address these limitations, this paper surveys methodologies

related to intersectional fairness and provides a discussion on

their implications.

2



Notation

• x ∈ X : protected attributes.

• x ′ ∈ X ′: unprotected attributes.

• X = (x , x ′) ∈ X × X ′ = X ∗: attributes(features).

• y ∈ Y: (binary) output (Although the paper does not

explicitly specify that the attributes are binary, the context

suggests that they are assumed to be binary.)

• (X , y) ∼ P: Data distribution.

• f : X ∗ → Y: a predictor, and f (X ): predictor output.

• C = {c : X → {0, 1}}: collection of characteristic functions

where c(x) = 1 indicates that an individual with protected

attribute x is in subgroup c .
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Subgroup Fairness

• Traditional notions of group fairness primarily assess

disparities between groups defined by independent protected

attributes such as gender or race.

• When fairness is assessed solely based on groups defined by

independent attributes, there is a significant risk of

overlooking unfairness experienced by finer-grained subgroups

formed through intersectionality.

• Subgroup fairness is an attempt to evaluate fairness across

more fine-grained groups that are defined by combinations of

multiple protected attributes.
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Subgroup Fairness

Definition 1 (Subgroup Fairness(Kearns et al., 2018))

A classifier f (x) is said to be γ-SP subgroup fair if for all c ∈ C,

|P(f (X ) = 1)− P(f (X ) = 1 | c(x) = 1)| × P(c(x) = 1) ≤ γ (1)

• The above condition imposes a constraint to ensure that the

prediction outcomes for each subgroup do not significantly

deviate from those of the overall population.
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Subgroup Fairness

• By measuring disparities across more detailed and diverse

subgroups rather than using simple group fairness, we can

ensure a more accurate and reliable notion of fairness.

• As the size of a subgroup decreases, its corresponding weight

in the fairness evaluation tends to diminish.

• Consequently, smaller subgroups may be considered less

significant in the overall fairness assessment, which could lead

to insufficient protection against discrimination for minority

groups.
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Calibration-based Fairness

• Calibration-based fairness is an approach that evaluates

fairness by assessing the alignment between predicted values

(i.e., model confidence) and actual outcomes.

• Fundamentally, it requires that the probabilistic predictions

made by the model for a specific subgroup are well-calibrated,

meaning they closely reflect the true outcome probabilities.
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Calibration-based Fairness

Definition 2 (Multicalibration(Hebert et al., 2018))

Given a parameter α ∈ [0, 1], a predictor f (x) is said to be

(C, α)-multicalibrated if for all predicted values v ∈ [0, 1] and for

all c ∈ C,
|E[c(x) · (y − v) | f (X ) = v ]| ≤ α. (2)

• The left-hand side of the condition represents the bias

between the actual outcomes and the predicted values. A

smaller value indicates that the model is better calibrated.

• The parameter α defines the maximum allowable bias,

meaning that a smaller α enforces a stricter calibration

requirement.

9



Calibration-based Fairness

• Since computing the above condition requires high

computational cost due to the need for conditional

expectations, a relaxed version of the condition has been

proposed.

Definition 3 (Weighted multicalibration(Gopalan et al.,

2022))

Given a collection of subgroups C and a weight class W, a

predictor f (x) is said to be (C,W, α)-multicalibrated if for all

c ∈ C and for all w ∈ W,

|E [c(x) · w(f (X )) · (y − f (X ))]| ≤ α. (3)
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Calibration-based Fairness

• As the degree of the polynomial weights increases, the

condition gradually converges to multicalibration.

• Calibration-based fairness enforces alignment between

predicted probabilities and actual outcomes within each

subgroup, thereby ensuring fairness for more fine-grained

intersectional subgroups.

• However, strict fairness criteria such as multicalibration can

incur high computational costs.

• Moreover, when the data for certain subgroups is sparse, it

may be difficult or even impossible to satisfy the calibration

condition.
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Metric-based Fairness

• Metric-based fairness is an approach that extends the notion

of individual fairness to protect intersectional groups.

• Individual fairness is grounded in the principle that ”similar

individuals should receive similar predictions,” and it evaluates

fairness by defining a distance metric over individuals’

attributes and assessing prediction consistency with respect to

this metric.

• To relax this situation, metric-multifairness, which requires

that similar subgroups are treated similarly, is introduced.
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Metric-based Fairness

Definition 4

For a small constant γ > 0 and an unknown similarity metric d , a

predictor f (x) is said to be (C, d , τ)-metric multifair if

E(x ,x ′)∼A
[
|f (x)− f (x ′)|

]
≤ E(x ,x ′)∼A

[
d(x , x ′)

]
+ γ. (4)

• This definition is the one adopted in the survey paper;

however, in my opinion, the notation used is quite

unconventional and potentially confusing.

• I dont’t understand why using C and what is the A.

• So I check the original paper(Kim et al., 2018).
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Metric-based Fairness

Definition 5 (Metric multifairness(Kim et al., 2018))

Let C ⊆ 2X
∗×X ∗

be a collection of comparisons and let

d : X ∗ ×X ∗ → [0, 2] be a metric. For some constant τ ≥ 0, a

hypothesis f is said to be (C, d , τ)-metric multifair if for all

S ∈ C,

E(X ,X ′)∼S

[∣∣f (X )− f (X ′)
∣∣] ≤ E(X ,X ′)∼S

[
d(X ,X ′)

]
+ τ. (5)

• This implies that for each subgroup S , if two instances X and

X ′ have similar feature values (i.e., are close under the metric

d), then their predictions f (X ) and f (X ′) should also be

similar.
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Differential Fairness

Definition 6 (Differential Fairness(Foulds et al., 2020))

A predictor f (x) is said to be ϵ-differentially fair if

e−ϵ ≤ P(f (X ) = y | xi )
P(f (X ) = y | xj)

≤ eϵ, (6)

holds for all tuples (xi , xj) ∈ X × X where 0 ≤ P(xj) ≤ 1.

• This is an intuitive intersectional definition of fairness:

regardless of the combination of protected attributes, the

probabilities of the out comes will be similar.

15



Differential Fairness

• This definition does not require the prediction outcomes to be

exactly the same across groups, but it enforces that the ratio

of outcomes between any two groups must remain within a

bounded range.

• A smaller value of ϵ indicates lower disparity between groups,

with ϵ = 0 representing perfect fairness.

• This concept offers a stricter and more comprehensive notion

of fairness compared to other definitions, as it protects against

discrimination across all possible subgroup combinations.
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Max-Min Fairness

• The idea essentially is to measure the value of the given

fairness metric for every subgroup.

• Then, take the ratio of the minimum and maximum values

from this given list.

• The further this ratio is from 1, the greater the disparity is

between subgroups.

• Examples of fairness metric are Demographic parity,

Conditional statistical parity, Equal opportunity and Group

Benefit Equality etc(Ghosh et al., 2021).
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Probabilistic Fairness

• Probabilistic Fairness relaxes the requirement of guaranteeing

fairness for all subgroups using a probabilistic approach.

Definition 7

For ϵ ≥ 0 and δ ∈ [0, 1], a predictor is said to be (ϵ, δ)-probably

intersectionally fair if

P(U ≥ ϵ) ≤ δ, (7)

where U = u(f (X ), s, s ′) measures unfairness for a randomly

chosen prediction and two protected groups s ̸= s ′ to compare

them.
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Probabilistic Fairness

• This means that the probability of the unfairness exceeding ϵ

is bounded above by δ, indicating that such violations are rare.

• Here, ϵ represents the allowable threshold for fairness

violations, while δ denotes the tolerated probability of

exceptions that exceed this threshold.

• In this setting, fairness violations exceeding ϵ are effectively

tolerated for a proportion of groups or instances up to δ,

which implies that severe discrimination may still persist for a

small minority.

19



Discussions

• Intersectional fairness frameworks evaluate fairness not only

across independent groups but also across more fine-grained

subgroups formed by the intersection of those attributes.

• However, some approaches apply weights based on subgroup

sizes, which can lead to relatively weaker protection for certain

minority groups.

• Therefore, approaches like Max-Min and Differential Fairness

aim to explicitly protect all possible subgroups.

• However, as the number of intersectional groups increases,

these methods also suffer from data sparsity issues, making

accurate fairness evaluation more challenging.
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Challenge

• Data Sparsity

1. As intersectional groups become more fine-grained, the

problem of extreme data sparsity arises.

2. For certain groups, the lack—or complete absence—of data

makes fairness evaluation either infeasible or statistically

unreliable.

• Selecting subgroups

1. It is practically infeasible to consider all possible intersectional

subgroups.

2. Moreover, there is no clear criterion for determining which

subgroups should be prioritized.

3. Therefore, it is necessary to develop methods that can

automatically identify meaningful subgroups or efficiently

detect critical intersectional groups.
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