Preventing Fairness Gerrymandering: Auditing and Learning for Subgroup Fairness

ICML 2018

Preventing Fairness Gerrymandering: Auditing and Learning for Subgroup Fairness

Metric of fairness

PART 1

Fairness

Defining of Subgroup

1. group: fairness gerrymandering problem

2. Need of Sub group : Fairness Violation evaluation \rightarrow Auditing (subgroup searching)

Auditing and Learning for subgroup Fairness

(Learner-Auditor) Zero-sum game formulation

Appendix

appendix

Experimental setting and result

Preventing Fairness Gerrymandering: Auditing and Learning for Subgroup Fairness

Experimental result

Figure 1. Evolution of the error and unfairness of Learner's classifier across iterations, for varying choices of *τ*.
(a) Error "t of Learner's model vs iteration t. (b) Unfairness t of subgroup found by Auditor vs. iteration t, as measured by Definition 2.3. See text for details.

appendix

Experimental setting and result

Preventing Fairness Gerrymandering: Auditing and Learning for Subgroup Fairness

Experimental result

Figure 2. (a) Pareto-optimal error-unfairness values, color coded by varying values of the input parameter *τ*.
(b) Aggregate Pareto frontier across all values of *τ*.
Here the *τ* values cover the same range but are sampled more densely to get a smoother frontier. See text for details.

Mathematical theorem

Auditing ~ Weak Agnostic Learning reduction theorem

Proving Computational equivalence

Theorem 3.1. Fix any distribution \mathcal{P} , and any set of group indicators \mathcal{G} . Then for any $\gamma, \varepsilon > 0$, the following relationships hold:

- If there is a $(\gamma/2, (\gamma/2 \varepsilon))$ auditing algorithm for \mathcal{G} for all D such that SP(D) = 1/2, then the class \mathcal{G} is $(\gamma, \gamma/2 - \varepsilon)$ -weakly agnostically learnable under \mathcal{P}^D .
- If \mathcal{G} is $(\gamma, \gamma \varepsilon)$ -weakly agnostically learnable under marginal distribution \mathcal{P}^D on (x, D(X)) for all D such that SP(D) = 1/2, then there is a $(\gamma, (\gamma - \varepsilon)/2)$ auditing algorithm for \mathcal{G} for SP fairness under \mathcal{P} .

Corollary 3.2. *Fix any distribution* \mathcal{P} *, and any set of group indicators* \mathcal{G} *. The following two relationships hold:*

- If there is a $(\gamma/2, (\gamma/2 \varepsilon))$ auditing algorithm for \mathcal{G} for all D with FP(D) = 1/2, then \mathcal{G} is $(\gamma, \gamma/2 - \varepsilon)$ weakly agnostically learnable under $\mathcal{P}_{y=0}^{D}$.
- If G is (γ, γ − ε)-weakly agnostically learnable under the conditional distribution P^D_{y=0} of (X, y) conditioned on the event that D(X) = 1 for all D with FP(D) = 1/2, then there is a (γ, (γ − ε)/2) auditing algorithm for FP subgroup fairness for G under distribution P.

Mathematical theorem

Theorem 3.3. Under standard complexity-theoretic intractability assumptions, for \mathcal{G} the classes of conjunctions of boolean attributes, linear threshold functions, or boundeddegree polynomial threshold functions, there exist distributions P such that the auditing problem cannot be solved in polynomial time, for either SP or FP fairness. **Theorem 4.1.** Fix any $\nu, \delta \in (0, 1)$. Then given an input of n data points and accuracy parameters ν, δ and access to oracles $\operatorname{CSC}(\mathcal{H})$ and $\operatorname{CSC}(\mathcal{G})$, there exists an algorithm runs in time $\operatorname{poly}(1/\nu, \log(1/\delta))$, and with probability at least $1 - \delta$, output a randomized classifier \hat{D} such that $\operatorname{err}(\hat{D}, \mathcal{P}) \leq \operatorname{OPT} + \nu$, and for any $g \in \mathcal{G}$, the fairness constraint violations satisfies

 $\alpha_{FP}(g, \mathcal{P}) \ \beta_{FP}(g, \hat{D}, \mathcal{P}) \leq \gamma + O(\nu).$