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PART 1

Fairness

| Metric of fairness

SP, equality of classification rates (statistical parity)

Preventing Fairness Gerrymandering:
Auditing and Learning for Subgroup Fairness

FP, equality of false positive rates (equal opportunity)
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PART 1 : - :
Preventing Fairness Gerrymandering:

Fairness Auditing and Learning for Subgroup Fairness

| Defining of Subgroup

1. group: fairness gerrymandering problem

6nary protected attributes Classification result L. race \
1.race 2.gender black | black
black | male | =--- — - — » [_Positive ] White | White
i i

black | female = = = - - -+ [ Negative ] : Statistical parity meet
White | male +==-- -—— jNegative J 2. gender

male male
White | female |- = — - - === Positive |

female || female

& g Statistical parity meet j

2. Need of Sub group :Fairness Violation evaluation - Auditing (subgroup searching)
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Preventing Fairness Gerrymandering:

. Auditing and Learning for subgroup Fairness Auditing and Learning for Subgroup Fairness

| (Learner-Auditor) Zero-sum game formulation

g (z) = arg max FairnessPenalty(D, g)
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Preventing Fairness Gerrymandering:

Experimentcll setting and result Auditing and Learning for Subgroup Fairness

| Experimental result

Learner: error, vs. t Auditor: gamma, vs. t
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Figure 1.  Evolution of the error and unfairness of Learner’s classifier across iterations, for varying choices of r.
(a) Error "t of Learner's model vs iteration t. (b) Unfairness t of subgroup found by Auditor vs. iteration t,
as measured by Definition 2.3. See text for details.
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| Experimental result
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Figure 2. (a) Pareto-optimal error-unfairness values, color coded by varying values of the input parameter r.
(b) Aggregate Pareto frontier across all values of .
Here the r values cover the same range but are sampled more densely to get a smoother frontier. See text for details.
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Mathematical theorem
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| Auditing ~ Weak Agnostic Learning reduction theorem

Proving Computational equivalence

Theorem 3.1. Fix any distribution P, and any set of group Corollary 3.2. Fix any distribution P, and any set of group
indicators G. Then for any ~,c > 0, the following relation- indicators G. The following two relationships hold:

ships hold.:

e [fthereisa (v/2,(v/2— <)) auditing algorithm for G

o [fthereisa (v/2,(v/2 — <)) auditing algorithm for G for all D with FP(D) = 1/2, then G is (v,7/2 — ¢)-
fOF all D such that SP(D) = 1/2, then the class Q’ s ',;i,,'.f?akf:l,‘ ggnggrf(ja”_y learnable under P@?:D'

(v,7/2 — €)-weakly agnostically learnable under PP .

e IfGis (v,vy — c)-weakly agnostically learnable un-

° IfgG "‘5.7 (75 T _.5) -l‘-lf’f?‘ﬂfd‘}gCIgHOSﬁCCI”}’ learnable under der the conditional distribution 'Pf:g of (X,y) con-
marginal distribution P™ on (x, D(X)) for all D such ditioned on the event that D(X) = 1 for all D with
that SP(D) = 1/2, then there is a (v, (v — £)/2)

B ' ' ' ) FP(D) = 1/2, then there is a (7, (v — £)/2) audit-
auditing algorithm for G for SP fairness under P. ing algorithm for FP subgroup fairness for G under
distribution P.
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Theorem 3.3. Under standard complexity-theoretic in-
tractability assumptions, for G the classes of conjunctions of
boolean attributes, linear threshold functions, or bounded-
degree polynomial threshold functions, there exist distribu-
tions P such that the auditing problem cannot be solved in
polynomial time, for either SP or FP fairness.

Theorem 4.1. Fix any v, 6 € (0,1). Then given an input
of n data points and accuracy parameters v, 0 and access
to oracles CSC(H) and CSC(G), there exists an algorithm
runs in time poly(1/v,log(1/48)), and with probability at
least 1 — 9O, output a randomized classifier D such that
e-r-r(i),??) < OPT +v, and for any g € G, the fairness
constraint violations satisfies

app(9,P) Brp(g, D, P) < v+ Ov).
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