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Introduction

Main Contributions
Simplify the Kearns et al. [2018] algorithm to make it heuristically
and test it on various datasets.

▶ Problem in Kearns et al. [2018]: Even if the algorithm
guarantees perfect fairness in theory, it may fail in practice.

▶ We use heuristic learner model and auditor model to test
the idea on real data.

▶ We study the trade-off between fairness and accuracy on
different datasets.



Notation

▶ x ∈ X : Protected attribute vector.

▶ x ′ ∈ X ′: Unprotected attribute vector.

▶ y ∈ {0, 1}: Binary label (e.g., 0 and 1).

▶ X = (x , x ′): Joint feature vector.

▶ P: Base probability distribution from which data is drawn.

▶ D : X → {0, 1}: Classifier that predicts a binary label given X .

▶ γ ∈ [0, 1]: Parameter for allowable fairness violation.

▶ G: Set of indicator functions for subgroups defined by protected
attributes (δ : X → {0, 1}).

▶ Each data point is given as a tuple (xi , c0,i , c1,i ):

▶ c0,i : Cost when predicting 0 for xi .
▶ c1,i : Cost when predicting 1 for xi .

▶ H: Hypothesis space for classifiers.

▶ r0, r1: Linear regression models to predict costs for class 0 and class 1,

respectively.



Related Work - Kearns et al. [2018]

Objective Function

▶ Fair metric: False Positive Subgroup Fairness

αP
F (δ,P) · βP

F (δ,D,P) ≤ γ,

αP
F (δ,P) = Pr

P
[δ(x) = 1, y = 0], βP

F (δ,D,P) = |FP(D)− FP(D, δ)| .

FP(D) = PrP [D(X ) = 1 | y = 0]: Overall FPR.

FP(D, δ) = PrP [D(X ) = 1 | δ(x) = 1, y = 0]: FPR for subgroup δ.

▶ Fair ERM problem:

minD∈∆H Eh∼D [err(h,P)]
s.t. ∀g ∈ G : αFP(g ,P)βFP(g ,D,P) ≤ γ

where err(h,P) = PrP [h(x , x
′) ̸= y ] and D is a distribution

over H.



Related Work - Kearns et al. [2018]
Fictitious Play Algorithm
▶ Define models:

▶ Learner: Linear classifier over all features.
▶ Auditor: Linear classifier over protected features.

▶ Set up oracles:

h∗ = arg min
h∈H

∑
i

[
h(xi )c1,i + (1− h(xi ))c0,i

]
and

δt = argmax
δ∈G

αP
F (δ,P) · βP

F (δ,D,P).

▶ Iterative Play (for each round t):
▶ Auditor: Compute and update δt using past plays.
▶ Learner: Compute and update ht via the CSC oracle.
▶ Record strategies using a uniform distribution over past rounds.

▶ Final Classifier: Form the final classifier as a weighted
average of all ht ’s.



MainFramework

Heuristic algorithm

1. Learner: Predicts costs and finds a prediction model.

ŷ = arg min
i∈{0,1}

ri (x), ĉi = ri (x), i = 1, 2.

2. Auditor: Evaluates unfairness for each subgroup → Selects
the worst-off subgroup.

3. Learner: Applies a cost penalty for that subgroup.

4. Repeat.



Experiment

▶ We test the heuristic approach on real data.

Figure: Error graphs for Law School and Adult datasets

▶ The results show unstable error rates on some datasets.



Experiment

▶ Comparison between the SUBGROUP algorithm and the
traditional fairness approach.

Figure: Left: Points from SUBGROUP (red) and the traditional
fairness algorithm (blue) on Student dataset. Right: Fairness of the
traditional algorithm.



Experiment

▶ How racial bias changes in the Subgroup algorithm.

Figure: Bias change graphs for white-black groups in the
Communities and Crime dataset.

▶ The experiments show that the bias reduces well.



Conclusion

▶ This work shows a practical implementation of a rich subgroup
fairness algorithm using heuristic learners and auditors.

▶ The algorithm converges fast on several datasets, achieving a
large improvement in fairness with a small loss in accuracy.

▶ The study confirms that traditional fairness methods do not
reduce subgroup unfairness enough.


