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What is TabPFN?

• A foundation model for tabular dataset.
• PFN (Prior-Data Fitted Networks)[2] on tabular dataset.
• A single transformer - supervised classification for small tabular

datasets in less than a second.
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What is PFN?

• Paper: Transformers Can Do Bayesian Inference [2]
• Goal: approximate a large set of posteriors (to be explained. . . )
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What is PFN?

• Train set: Dtrain = {(xi, yi)}ni=1

• New data and its output: (xtest, ytest).
• Goal: approximate Posterior predictive distribution (PPD)

p(ytest|xtest, Dtrain) (1)

• How to approximate? Prior-Data fitting
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Prior-Data Fitting

• Loss: Prior-Data NLL

LPFN (θ) = E
({(xtest,ytest)}∪Dtrain)∼p

[− log qθ(ytest|xtest, Dtrain)]

= Ex,Dtrain∼p[H(p(·|x,Dtrain), qθ(·|x,Dtrain))]
(2)

• H: cross-entropy
• Practically, authors choose qθ as a transformer.
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Variational Inference vs. PFN

VI
• qϕ(w) ≈ p(w|D) (w: weight parameter)
• p(y∗|x∗, D) ≈

∫
p(y∗|x∗, w)qϕ(w)dw

• When D differs, ϕ should be re-trained.
PFN

• Directly approximate qθ(y|x,D) ≈ p(y|x,D), in (D,x) 7→ y way.
• p(y∗|x∗, D) ≈ qθ(y

∗|x∗, D)

• Does not require a re-train → fast.
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TabPFN vs. PFN

• TabPFN is a PFN, but with a novel prior for tabular data.
• Technical Modification:

i) Modify attention masks.
ii) Enable the model to work on datasets with different number of

features, by zero-padding.
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A Prior for Tabular Data

BNN and SCM prior

• SCM = Structured Causal Model.
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BNN Prior

• Prior on architecture
(1) sample a model architecture: A ∼ p(A)
(2) sample model weights, given A: Wi,j ∼ pw(·)
(3) sample i.i.d. features xi,f ∼ N(0, 1) (i: index, f: feature)
(4) yield {(xi, AW (xi))}Ni=1
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SCM Prior

• Tabular data: causal relationships between columns.
• Sample DAG structure & deterministic functions.

(1) Sample MLP structure and its weights.
(2) Drop a random set of edges (MLP with dropped edges = DAG

structure).
(3) Sample feature nodes and a label node.
(4) Sample noise distribution p(ϵ) ∼ p(p(ϵ)).
(5) Sample noise variables ϵi.
(6) Compute node values as zi = a((

∑
j∈PAG(i)

Eijzj) + ϵi).
(7) Retrieve the values of feature nodes and the output node.
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Experiments

Toy Data
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Experiments

Real Datasets
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Pros & Cons

Pros
i) Fast inference.
ii) No need of additional training.
iii) Bayesian inference.
iv) Understanding on the causal structure of data generation.

Cons
i) Cannot applied in large datasets.
ii) Hard to handle categorical variables.
iii) Hard to handle high-dimensional (>100) datasets.
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