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What is TabPFN?

e A foundation model for tabular dataset.
e PFN (Prior-Data Fitted Networks)[2] on tabular dataset.

e A single transformer - supervised classification for small tabular
datasets in less than a second.
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What is PFN?

e Paper: Transformers Can Do Bayesian Inference [2]

e Goal: approximate a large set of posteriors (to be explained. . .)

Sample prior datasets D ~ p(D A .
per O 5, logan(uieleDas D

Train the PFN by minimizing ]

(D = D@, U (e s} :
. PFN with parameters 6™
’ Bayesian inference via the trained
K K) (K
[D(K) = Dfm)m U {(Iéggl, yiesi)}] PFN, with the actual training

data and a test point as input:
Actual training dataset and test input qo* (Ytest|Ttests Dirain) =

(Dtrain, Ttest) P(Ytest|Trests Dirain)

Figure 1: A visualization of Prior-Data Fitted Networks (PFNs). We sample datasets from a prior and
fit a PFN on hold-out examples of these datasets. Given an actual dataset, we feed it and a test point
to the PFN and obtain an approximation to Bayesian inference in a single forward propagation.
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What is PFN?

Train set: Digain = {(zi, yi) }1y
New data and its output: (Ztest, Ytest)-

Goal: approximate Posterior predictive distribution (PPD)

P(Yrest|Ttest, Drrain) (1)

How to approximate? Prior-Data fitting

Jihu Lee (SNU) TabPFN review March 20, 2025 4/15



Prior-Data Fitting

e lLoss: Prior-Data NLL
E [_ log QG(ytest‘wtesb Dtrain)]
(2)

Lprn(0) =
({(ztest Ytest) }UD+train ) ~p
= Em,Dtraian[H(p(.|m7 Dtrain), q0(|x, Dtrain))]

e H: cross-entropy
e Practically, authors choose ¢y as a transformer.

. Train the PFN by minimizing
Sample prior datasets D) ~ p(D) 5 |G i
— XK, log qu(ytrelwteee Dinin)

DY = D U{(ide vids)} )
. PFN with parameters 6”
- Bayesian inference via the trained
K K) (K
D¥ = D), U{(zieh vie)} PEN, with the actual training
data and a test point as input:
G+ (Yeest|Teest, Derain) =

P(Ytest|Zests Dirain)

Actual training dataset and test input

(Dtrain, Ttest)
Figure 1: A visualization of Prior-Data Fitted Networks (PFNs). We sample datasets from a prior and
fit a PEN on hold-out examples of these datasets. Given an actual dataset, we feed it and a test point
to the PFN and obtain an approximation to Bayesian inference in a single forward propagation.
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Variational Inference vs. PFN

VI
o q¢( ) =~ p(w|D) (w: weight parameter)
y*lz*, D) = [ ply*|z*, w)gy(w)dw
. When D differs, ¢ should be re-trained.
PFN
e Directly approximate gy (y|z, D) = p(y|z, D), in (D, x) — y way.
e p(y*|z*, D) =~ qo(y*|z", D)
e Does not require a re-train — fast.
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TabPFN vs. PFN

e TabPFN is a PFN, but with a novel prior for tabular data.
e Technical Modification:
i) Modify attention masks.

i) Enable the model to work on datasets with different number of
features, by zero-padding.

TabPFN i trained on synihetic data to take entire TabPFN can now be applied to arbitrary
inaforward pass unseen real-world datasets.
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A Prior for Tabular Data

BNN and SCM prior

(a) A BNN (b) An SCM (c) SCMs sampled from the prior

Figure 2: Overview of graphs generating data in our prior. Inputs = are mapped to the output y

through unobserved nodes z. Plots based on@

e SCM = Structured Causal Model.
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BNN Prior

e Prior on architecture

(1) sample a model architecture: A ~ p(A)

(2) sample model weights, given A: W; j ~ puw(-)

(3) sample i.i.d. features x; y ~ N(0,1) (i: index, f: feature)
(4) yield {(zi, Aw (i)}
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SCM Prior

e Tabular data: causal relationships between columns.
e Sample DAG structure & deterministic functions.
(1) Sample MLP structure and its weights.
(2) Drop a random set of edges (MLP with dropped edges = DAG
structure).
(3) Sample feature nodes and a label node.
(4) Sample noise distribution p(e) ~ p(p(e)).
(5) Sample noise variables ;.
(6) Compute node values as z; = a((ZJGPAg( ) Eijz;) + €).
(7) Retrieve the values of feature nodes and the output node.
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Experiments

Toy Data

Nearest Gaussian  Decision
Input data  Neighbors ~ Logistic  Simple MLP  Process Tree Catboost ASKL2 TabPFN

Figure 4: Decision boundaries on toy datasets generated with scikit-learn (Pedregosa et al.| 2011).
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Experiments

Real Datasets
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Pros
i) Fast inference.
i) No need of additional training.
iii) Bayesian inference.
iv) Understanding on the causal structure of data generation.
Cons
i) Cannot applied in large datasets.
ii) Hard to handle categorical variables.
iii) Hard to handle high-dimensional (>100) datasets.
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