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Introduction

e CP techniques aim to construct a prediction set that, for given test inputs,
is guaranteed to contain the true (unknown) output with high probability.

e The set is built using a conformity score, which, roughly speaking,
indicates the similarity between a new test example and the training
examples.

e For regression, CP can be challenging when the output distribution is
heteroscedastic, multimodal, or skewed (Lei & Wasserman, 2014).

e The main challenge lies in the design of the conformity score.

e We convert regression to a classification problem and then use CP for
classification to obtain CP sets for regression.

e To preserve the ordering of the continuous-output space, we design a new
loss function and make necessary modifications to the CP classification
techniques.
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e Left: Example where the output distribution is heteroscedastic.

e Right: Example where the output distribution is bimodal.



BACK UND ON CONFORMAL PREDICTION

e Given a new input Xpew, CP techniques aim to construct a set that
contains the true but unknown output ypen with high probability.

e Assuming that a pair of input-output variables (x, y) has a joint density
p(x,y) and a conditional density p(y|x), oracle prediction sets for the
output y can be constructed as

{zeR:p(x,z) >71a} or {z€R:p(z|x)>Tax},

where the thresholds 7, and 7, « are selected to ensure that the
corresponding sets have a probability mass that meets or exceeds
prescribed confidence level 1 — a € (0, 1).

e As the ground-truth distribution is unknown, we rely on estimating these
uncertainty sets using the density estimators p(x, y) and p(x|y)

e Without a stronger distribution assumption, the finite-sample guarantee is
typically not upheld.



BACKGROUND ON CONFORMAL PREDICTION

e Conformal Prediction has arisen as a method for yielding sets that do hold

finite-sample guarantees.

e Given a observed instance (Xpew, Ynew) Where ynew is unknown, Conformal
Prediction (Vovk et al., 2005) constructs a set of values that contains ynew
with high probability without knowing the underlying data distribution.

e This property is guaranteed under mild assumption that the data satisfies
exchangeability.

e The set is called the conformal set and is built using a conformity score,
denoted by o(x, y), which measures how appropriate an output value is

for a given input example.



BACKGROUND ON CONFORMAL PREDICTION

e There are many ways to build the conformity score, but they all involve
splitting the data into a training set Dy and a calibration set D,

e Often, a prediction model p(x) is built using the training set, and then a
conformity score is obtained using this model along with the calibration
set.

e The conformal set merely gathers the points with larger conformity scores:
{Z eR: U(Xnewaz) > Ql*O&(DCQI)}y
where Q1—a(Dear) is the (1 — «) quantile od the conformity scored on the

calibration data.

e This set provably contains ypen with probability larger than 1 — « for any
finite sample size and without assumption on the ground-truth
distribution.



BACK UND ON CONFORMAL PREDICTION

e There are many design choices for this conformity score.

e For example, one can choose a prediction model p¢(x) as an estimate of
the conditional expectation and o(x, y) = —|y — pe(x)].

e The corresponding conformal set is a single interval centered around the
prediction ps(x) and of constant length Qi—«(Dea) for any example Xnew,
without taking into account its variability.

e However, in situations where the underlying data distribution
demonstrates skewness or heteroscedasticity, we may desire a more flexible
conformity score.

e \We explore established density estimation in Classification Conformal
Prediction that are already performing effectively.
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Classification Conformal Prediction

e We aim to compute a conformity function that accurately predicts
the appropriateness of a label for a specific data point.

e Typically, practitioners perform conformal prediction for classification
with probability estimates from Softmax neural network that covers

K output logits using cross-entropy loss.

e |et us denote the parametrized density

exp(v))

go(-|x) = softmax(fs(x)), where softmax(v); = —————
2 k=1 €xP(v)

where fy : RY — RK
as the outputted discrete probability distribution over the labels of
the input x.



Classification Conformal Prediction

e Traditionally, we fit our neural network by minimizing the
cross-entropy loss on the training set:

0 € argming Z KL(6y,||qo(-|xi))-
i=1

Here, 0, is the Dirac Distribution with all of the probabilitistic mass
on yi

e A natural conformity score is simply the probability of a label
according to the learned conditional distribution, i.e.,

a(x,y) = qa(yIx)

assuming that we acquired a 0 that has minimized the traditional
cross-entropy loss function on the training dataset.



Regression to Classification approach

e The distribution of labels in the regression scenario is continuous, and
learning a continuous distribution directly using a neural network is
challenging(Rothfuss et al., 2019).

e It would be desirale to use similar methods for both classification and
regression conformal prediction.

e We simply turn a regression problem into a classification problem by
binning the range space.

e Specifically, generate K bins with K equally spaced numbers covering the
interval Y = [Ymin, Ymx], Where ymin (OF ymax) is the minimum (or
maximum) value of the labels observed in the training set.



Regression to Classification approach

e Explicitly, we define our discretization of the label space as

9k —n
K-1

Y ={p, .., 9k} where Jii1 =y + With $1 = Ymin and Pk = Yimex

e These values y € ) from the midpoints for each bin of our discretization.

e To unify classication and regression conformal prediction, a simple
solution is to employ the Classification Conformal Prediction model with
discrete labels y; = argminyej,|y,- — 9

e This will aid in training the neural network with modified labels through
cross-entropy loss, resulting in a discrete distribution of go(:|x)

e To compute conformity scores for all labels, employ linear interploation
from the discrete probability function gs(:|x) to generate the continuous
distribution go(:|x). for any y between yx and P41

V1 —y

Go(y|x) = ke (Vk|x) + (1 — ) qo (Fr+11x), e = = 2
Yk+1 — Yk
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e Problem with employing CrossEntropy loss in the classification
conformal prediction is that any structural relationships between
classes are disregarded

e For classification context, no structure exists between classes, and
each class is independent.

e However, within the regression setting, the labels adhere to an
ordinal structure.

e Need to a new loss function that incentivizes the allocation of
probabilistic mass not only to the corret bin but also to the
neighboring bins.
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e Given an input and output pair (x, y), our goal is to determine a
density estimate gp(+|x) that assigns low probability to points that
are far to the true label y, i.e.,

go(9]x;) high when the loss /(9, y;) is small
with I(9,yi) = lyi = 9P, p > 0
e Hence, a natural desideratum for learning the probability density

function gy is that their product /(y, 7)q(y|x) is small in
expectation.

e we propose to find a ditribution gy minimizing the loss

K
Equ (-1x) [/y y Z y yk yk|X)
k=1
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Entropy Regularization

e Although the proposed loss function better encodes the connection
between bins, it tends toward outputting Dirac distribution.

e For smoothness we rely on a classical entropy regularization
technique for learning density estimators(Wainwright & Jordan,
2008)

e Formally, we can calculate the entropy of our probability distribution
by using the Shannon entropy # of the produced probability
distribution g(+|x) as a penalty term as follows:

K
H(qo(-|x)) =D _ qo(Jilx)log qa(Jilx)

k=1
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Summary

Algorithm 1 Regression to Classication Conformal Prediction (R2CCP).

1:

o W

Input:
* Dataset D,, = {(z1,y1),-- -, (Tn, y,)} and new input z,, |
* Desired confidence level a € (0, 1)

: Hyperparameters: temperature 7 > 0, p > 0, number of bins K > 1

: Discretize the output space [Ymin, Ymax] into K equidistant bins with midpoints {31, ...,k }
: Randomly split the dataset D,, in training Dy, and calibration Dy

: Find a distribution g;(- | ) by (approximately) optimizing on the training set Dy,

ny K

0 € arg min SO lyi = klPao(in | w:) — TH(go(- | 24)
i=1 k=1

where qo (x| ©) = softmax(fy(z))y, for a model (e.g., neural net) fp : RY — R,

8« {gyly | 2) for (z,y) € Dear}
¢ Qa(Deal) ¢+ quantile(S, a)
: return Conformal Set T(®)(z,,11) = {# € R | §3(2 | Tnt1) > Qa(Dear)}
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Experiments

DATASET BIMODAL LOGNORM  CONCRETE  MEPS-19 MEPS-20 MEPS-21 Bio COMMUNITY
COQR 214001 1580z 0.390.01) 1.8Twos) 200007 1.9%0ws 134001 1.440.08
KDE 0.35(0.01) 1 4U'n oay 154003y 21602y 2.51pos  2.3%003 2.2Twon) 2.23(0.09)
Lasso 214000y 3 06y 2T4a03)  46400s) 42T90.00 4920000 389000) 3261005
‘-‘B 2-1()L<)_|m_| *20.01) 0.!}()[“ 01) 4-"1.7“).\12) 4-?‘”:u. 4-51w 01) Q-f_m(u 00y lﬁom_mn
U‘ER 2.146.00y 2005y 0-470.02) ?-fl(?(l).uh) ?—:‘Hu.u.n ?'75Ej= o3y L5901y 1.489 g5y
DCp 2.14(6.01y oty 0ATg01y 686405 45, 66.71 g0y 67560 337 1.740.01) 15903
RICCP (OURS)  0.46p.015 1960057 0.38(p.01) 1.60(0.01) 1.7000a) 1.72p.0s 1.1lip01) 1.470.08)
DATASET DIABETES  SOLAR PARKINSONS STOCK CANCER PENDULUM  ENERGY FOREST
COR 1.98/022) 0.42001) 1.85(023 3.08(013 2.250031) 0.19(0.01) 3.18(0.19)

KDE 0.50(0.01) 3.790.02) 472020 382000 396000 272007 280017
Lasso 3.0L .04 .‘ ~>4.n 12y 34603 L3%0q) 355004y 39p0n L2900 397000

CB 1.194 01y 3420 01y 1324501 3 14m ad) 3Tl pnay 126001y 375001
CHR 1400502y 0.680.02) 1.590.07) 169611y 0.23;001) 3.03(015
ber L2902y 0.83(9.04)  L.090.10) L76p.10) 0280001y 600002

R2CCP (OURS) 1.34(0.02) 3. Sﬂ(g 61) 0.50(000) 0.92¢0.02) 3.21(0 ga] 1.80i0.07) 0.20(0.02) 3.80(0.26)

Table 1: This is the length results over all datasets. We see that our method achieves the best length
on 10 of the 16 datasets. Meanwhile, CQR is best at 5, CHR is best at 3, CB is best at 1, and KDE
is the best at 3. Our method achieves the shortest intervals across these datasets.
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Experiments
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Experiments

DATASET ~ BIMODAL LoG- CONCRETE ~ MEPS-19 MEPS-20 MEPS-21 Bio COMMUNITY
NORMAL
LnE 0.430.001 3.250.058 1.890.037 3.730.057 3.790.061 8.780.163 2.010.006 3.640.054
LyLe 0.350.001  1.760.020 0.740.016 1.580.008 1.590.000 1.710.034 2.71o.001 2.320.047
LMLE+E 0.360.001 3.520.008 1.910.017 1.600.008 1.630.027 1.700.008 2.320.003 3.770.013
0.440.002 1.820.034 0.870.00a 1.600.000 1.59.011 1.690.013 1.100.002 1.500.025
DATASET ~ DIABETES  SOLAR PARKINSONS STOCK CANCER PENDULUM  ENERGY FOREST
LnE 1.92¢.052 2.200.233 4.760.033 10.170.165  3.260.207 12.820.479  3.300.093 3.330.251
LyLe 1.560.031 0.140.005  0.340.006 4.480.214 3.260.117 3.000.203 0.250.011 3.040.110
LMLE+E 1.960.012 0.150.005 0.230.001  9.730.074 3.950.022 13.400.221  0.250.009 5.240.055
1.870.037 0.660.002 0.460.036 1.950.0390 3.040.122 1.620.02a2 0.210.025 2.920.127
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