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Introduction

• CP techniques aim to construct a prediction set that, for given test inputs,

is guaranteed to contain the true (unknown) output with high probability.

• The set is built using a conformity score, which, roughly speaking,

indicates the similarity between a new test example and the training

examples.

• For regression, CP can be challenging when the output distribution is

heteroscedastic, multimodal, or skewed (Lei & Wasserman, 2014).

• The main challenge lies in the design of the conformity score.

• We convert regression to a classification problem and then use CP for

classification to obtain CP sets for regression.

• To preserve the ordering of the continuous-output space, we design a new

loss function and make necessary modifications to the CP classification

techniques.
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Examples

• Left: Example where the output distribution is heteroscedastic.

• Right: Example where the output distribution is bimodal.
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BACKGROUND ON CONFORMAL PREDICTION

• Given a new input xnew , CP techniques aim to construct a set that

contains the true but unknown output ynew with high probability.

• Assuming that a pair of input-output variables (x , y) has a joint density

p(x , y) and a conditional density p(y |x), oracle prediction sets for the

output y can be constructed as

{z ∈ R : p(x , z) ≥ τα} or {z ∈ R : p(z | x) ≥ τα,x},

where the thresholds τα and τα,x are selected to ensure that the

corresponding sets have a probability mass that meets or exceeds

prescribed confidence level 1− α ∈ (0, 1).

• As the ground-truth distribution is unknown, we rely on estimating these

uncertainty sets using the density estimators p̂(x , y) and p̂(x |y)

• Without a stronger distribution assumption, the finite-sample guarantee is

typically not upheld.
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BACKGROUND ON CONFORMAL PREDICTION

• Conformal Prediction has arisen as a method for yielding sets that do hold

finite-sample guarantees.

• Given a observed instance (xnew , ynew ) where ynew is unknown, Conformal

Prediction (Vovk et al., 2005) constructs a set of values that contains ynew

with high probability without knowing the underlying data distribution.

• This property is guaranteed under mild assumption that the data satisfies

exchangeability.

• The set is called the conformal set and is built using a conformity score,

denoted by σ(x , y), which measures how appropriate an output value is

for a given input example.
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BACKGROUND ON CONFORMAL PREDICTION

• There are many ways to build the conformity score, but they all involve

splitting the data into a training set Dtr and a calibration set Dcal

• Often, a prediction model µtr (x) is built using the training set, and then a

conformity score is obtained using this model along with the calibration

set.

• The conformal set merely gathers the points with larger conformity scores:

{z ∈ R : σ(xnew , z) ≥ Q1−α(Dcal)},

where Q1−α(Dcal) is the (1− α) quantile od the conformity scored on the

calibration data.

• This set provably contains ynew with probability larger than 1− α for any

finite sample size and without assumption on the ground-truth

distribution.
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BACKGROUND ON CONFORMAL PREDICTION

• There are many design choices for this conformity score.

• For example, one can choose a prediction model µtr (x) as an estimate of

the conditional expectation and σ(x , y) = −|y − µtr (x)|.

• The corresponding conformal set is a single interval centered around the

prediction µtr (x) and of constant length Q1−α(Dcal) for any example xnew ,

without taking into account its variability.

• However, in situations where the underlying data distribution

demonstrates skewness or heteroscedasticity, we may desire a more flexible

conformity score.

• We explore established density estimation in Classification Conformal

Prediction that are already performing effectively.
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CP via

Regression-as-Classification



Classification Conformal Prediction

• We aim to compute a conformity function that accurately predicts

the appropriateness of a label for a specific data point.

• Typically, practitioners perform conformal prediction for classification

with probability estimates from Softmax neural network that covers

K output logits using cross-entropy loss.

• Let us denote the parametrized density

qθ(·|x) = softmax(fθ(x)),where softmax(v)j =
exp(vj)∑K
k=1 exp(vk)

,

where fθ : Rd → RK

as the outputted discrete probability distribution over the labels of

the input x .
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Classification Conformal Prediction

• Traditionally, we fit our neural network by minimizing the

cross-entropy loss on the training set:

θ̂ ∈ argminθ

n∑
i=1

KL(δyi ||qθ(·|xi )).

Here, δyi is the Dirac Distribution with all of the probabilitistic mass

on yi

• A natural conformity score is simply the probability of a label

according to the learned conditional distribution, i.e.,

σ(x , y) = qθ̂(y |x)

assuming that we acquired a θ̂ that has minimized the traditional

cross-entropy loss function on the training dataset.
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Regression to Classification approach

• The distribution of labels in the regression scenario is continuous, and

learning a continuous distribution directly using a neural network is

challenging(Rothfuss et al., 2019).

• It would be desirale to use similar methods for both classification and

regression conformal prediction.

• We simply turn a regression problem into a classification problem by

binning the range space.

• Specifically, generate K bins with K equally spaced numbers covering the

interval Y = [ymin, ymx ], where ymin (or ymax) is the minimum (or

maximum) value of the labels observed in the training set.
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Regression to Classification approach

• Explicitly, we define our discretization of the label space as

Ŷ = {ŷ1, ..., ŷK} where ŷk+1 = ŷk +
ŷK − ŷ1
K − 1

with ŷ1 = ymin and ŷK = ymax

• These values ŷ ∈ Y from the midpoints for each bin of our discretization.

• To unify classication and regression conformal prediction, a simple

solution is to employ the Classification Conformal Prediction model with

discrete labels ỹi = argminŷ∈Ŷ |yi − ŷ |

• This will aid in training the neural network with modified labels through

cross-entropy loss, resulting in a discrete distribution of qθ(·|x)

• To compute conformity scores for all labels, employ linear interploation

from the discrete probability function qθ(·|x) to generate the continuous

distribution q̄θ(·|x). for any y between ŷk and ŷk+1

q̄θ(y |x) = γkqθ(ŷk |x) + (1− γk)qθ(ŷk+1|x), γk =
ŷk+1 − y

ŷk+1 − ŷk
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Data Fitting

• Problem with employing CrossEntropy loss in the classification

conformal prediction is that any structural relationships between

classes are disregarded

• For classification context, no structure exists between classes, and

each class is independent.

• However, within the regression setting, the labels adhere to an

ordinal structure.

• Need to a new loss function that incentivizes the allocation of

probabilistic mass not only to the corret bin but also to the

neighboring bins.

11



Data Fitting

• Given an input and output pair (x , y), our goal is to determine a

density estimate qθ(·|x) that assigns low probability to points that

are far to the true label y , i.e.,

qθ(ŷ |xi ) high when the loss l(ŷ , yi ) is small

with l(ŷ , yi ) = |yi − ŷ |p, p > 0

• Hence, a natural desideratum for learning the probability density

function qθ is that their product l(y , ŷ)q(ŷ |x) is small in

expectation.

• we propose to find a ditribution qθ minimizing the loss

Eŷ∼q(·|x)[l(y , ŷ)] =
K∑

k=1

l(y , ŷk)q(ŷk |x)
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Entropy Regularization

• Although the proposed loss function better encodes the connection

between bins, it tends toward outputting Dirac distribution.

• For smoothness we rely on a classical entropy regularization

technique for learning density estimators(Wainwright & Jordan,

2008)

• Formally, we can calculate the entropy of our probability distribution

by using the Shannon entropy H of the produced probability

distribution q(·|x) as a penalty term as follows:

H(qθ(·|x)) =
K∑

k=1

qθ(ŷk |x)log qθ(ŷk |x)
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Summary
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Experiments

15



Experiments

16



Experiments

17


	CP via Regression-as-Classification

