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Introduction

Background
▶ Conventional quantile regression-based conformal prediction methods tend to construct

prediction intervals that undercover the response conditionally to some missing patterns.

Contribution
▶ Suggest novel conformalized quantile regression framework, missing data augmentation,

which yields prediction intervals that are valid conditionally to the patterns of missing
values.

▶ Prove that the proposed algorithms satisfy desirable theoretical properties.
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Notation

▶ X = (X1, · · · ,Xd) ∈ Rd : d-dimensional feature vector.
▶ M = (M1, · · · ,Md) ∈ {0, 1}d : A mask such that Mj=0 when Xj is observed and Mj = 1

otherwise.
▶ Y ∈ R : Outcome.
▶ M = {0, 1}d : Set of masks.
▶ For a mask m ∈ M, Xobs(m) is the random vector of observed components, and Xmis(m) is

the random vector of unobserved one.
▶ For (

◦
m, m̆) ∈ M2,

◦
m⊂ m̆ denotes

◦
mj= 1 then m̆j = 1 for any j ∈ {1, · · · , d} , i.e. m̆

includes at least the same missing values than
◦
m.

▶ α : Miscoverage rate



(Split) Conformalized Quantile Regression (CQR)

Proper training set : Tr / Calibration set : Cal / Test set : Te



(Split) Conformalized Quantile Regression (CQR)

low = α/2, high = 1 − α/2

q̂low(X) = QuantileRegression(X, α/2)

q̂high(X) = QuantileRegression(X, 1 − α/2)



(Split) Conformalized Quantile Regression (CQR)



(Split) Conformalized Quantile Regression (CQR)



(Split) Conformalized Quantile Regression (CQR)

Theorem (1)
If
(
X(k), Y(k)

)
, k = 1, . . . , n + 1 are exchangeable, then the prediction interval Ĉ

(
X(n+1)

)
constructed by the split CQR algorithm satisfies

P
{

Y(n+1) ∈ Ĉ
(

X(n+1)
)}

≥ 1 − α

Moreover, if the conformity scores s(k) are almost surely distinct, then the prediction interval is
nearly perfectly calibrated:

P
{

Yn+1 ∈ Ĉ (Xn+1)
}

≤ 1 − α+ 1/ (#Cal + 1)



Validity with Missing values

1 − α ≤ P
{

Yn+1 ∈ Ĉ
(

X(n+1),M(n+1)
)}

≤ 1 − α+
1

(#Cal + 1)



Impute then predict + conformalization

▶ Let ϕm : R|obs(m)| → R|mis(m)| be a imputation function.
▶ Let Φ = (Φ1, · · · ,Φd) : Rd × {0, 1}d → Rd be a function such that

Φj(X,M) = XjIMj=0 + ϕM
j (Xobs(M))IMj=1

Theorem (2)
Assume exchangeability holds and the imputation function Φ is the output of an algorithm I
treating its input data points symmetrically: I

((
X(σ(k)),M(σ(k))

)n+1
k=1

)
(d)
=

I
((

X(k),M(k)
)n+1

k=1

)
conditionally on

(
X(k),M(k)

)n+1
k=1 and for any permutation σ. Then, the

prediction interval Ĉ
(
X(n+1),M(n+1)

)
satisfies

1 − α ≤ P
{

Yn+1 ∈ Ĉ
(

X(n+1),M(n+1)
)}

. Also if the conformity scores s(k) are almost surely distinct,

1 − α ≤ P
{

Yn+1 ∈ Ĉ
(

X(n+1),M(n+1)
)}

≤ 1 − α+
1

(#Cal + 1)

is holds.



Mask-Conditional-Validity(MCV)

▶ Gaussian linear regression with d = 3.
▶ Missingness mechanism : MCAR / Missing rate : 20%.
▶ Imputation : Iterative regression.



Mask-Conditional-Validity(MCV)

For any m ∈ M,

1 − α ≤ P
(

Y(n+1) ∈ Ĉα

(
X(n+1),m

)
| M(n+1) = m

)
≤ 1 − α+

1
#Calm + 1

,

where Calm = {k ∈ Cal such that m(k) ⊂ m
}

.



MCV

▶ CP-MDA-Exact : Select the data in the calibration set (Cal) that contains missing values
included in the missing columns of the test data + Additional Masking

▶ CP-MDA-Nested : Masking the calibration set with max-mask + temporary test point
(quantile of confidence interval induced by TTP).



Theorem - MCV

Assume missing mechanism is MCAR and (Y ⊥ M)|X
▶ For all m ∈ M, CP-MDA-Exact satisfies

1 − α ≤ P
(

Y(n+1) ∈ Ĉα

(
X(n+1),m

)
| M(n+1) = m

)
,

▶ If the conformity scores s(k) are almost surely distinct, for all m ∈ M, CP-MDA-Exact
satisfies,

1 − α ≤ P
(

Y(n+1) ∈ Ĉα

(
X(n+1),m

)
| M(n+1) = m

)
≤ 1 − α+

1
#Calm + 1

,

where Calm = {k ∈ Cal such that m(k) ⊂ m
}

.



Theorem - MCV

Assume missing mechanism is MCAR and (Y ⊥ M)|X

▶ Let (
◦
m, m̆) ∈ M2. If

◦
m⊂ m̆ then for any δ ∈ [0, 0.5],

q
Y|(Xobs(m̀),M=m̌)
1−δ/2 ≤ q

Y|(Xobs(m̆),M=m̆)
1−δ/2 , q

Y|(Xobs(m̀),M=m̌)
δ/2 ≥ q

Y|(Xobs(m̆),M=m̆)
δ/2 are hold.

Then, CP-MDA-Nested satisfies

1 − α ≤ P
(

Y(n+1) ∈ Ĉα

(
X(n+1),m

)
| M(n+1) = m

)
,

up to a technical minor modification of the output.
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