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Introduction

Background

> Conventional quantile regression-based conformal prediction methods tend to construct
prediction intervals that undercover the response conditionally to some missing patterns.

Contribution

> Suggest novel conformalized quantile regression framework, missing data augmentation,
which yields prediction intervals that are valid conditionally to the patterns of missing
values.

> Prove that the proposed algorithms satisfy desirable theoretical properties.
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Notation

> X = (X1, -+ ,Xq) € R?: d-dimensional feature vector.
> M= (M, - ,My) € {0,1}% : A mask such that M;=0 when X; is observed and M; = 1
otherwise.

» Y € R : Outcome.
> M = {0, 1}¢: Set of masks.

> For amask m € M, X,y is the random vector of observed components, and X, () is
the random vector of unobserved one.

» For (r?z,rh) € M2, mC in denotes r(;lj: 1 thenm; = 1foranyj e {1,--- ,d},ie.m
includes at least the same missing values than .

» « : Miscoverage rate



(Split) Conformalized Quantile Regression (CQR)

» Create a proper training set, a calibration set, and keep
your test set, by randomly splitting your data set.

Proper training set : Tr / Calibration set : Cal / Test set : Te



(Split) Conformalized Quantile Regression (CQR)

4
, .
= U On the proper training set:
Step 1
-2 » Learn g, and ¢,
—4
0 2 4

T
low = /2, high=1— /2

Giow (X) = QuantileRegression(X, o /2)
{high(X) = QuantileRegression(X, 1 — c/2)



(Split) Conformalized Quantile Regression (CQR)

On the calibration set:
» Predict with g, and q,,,

» Get the scores
= max { oy (#*) —y®, y*) — Gy (=)}

» Compute the (1 — ar) x (1+ #éal) empirical quantile of

the . noted



(Split) Conformalized Quantile Regression (CQR)

4
2
On the test set:
= 0
Step 3 » Predict with g, and Gy,
» Build Gy (2): [ (1) — Q1 o (5) (o) =0
—4




(Split) Conformalized Quantile Regression (CQR)

Theorem (1)
If (X(k)7 Y(k)) yk=1,...,n+ 1 are exchangeable, then the prediction interval C (X(”H))
constructed by the split COR algorithm satisfies

IP’{Y(”'H) ecC (X("+1>)} >l—a

Moreover, if the conformity scores s® are almost surely distinct, then the prediction interval is
nearly perfectly calibrated:

P{¥ii1 € COu)} <1 —a 1/ (#Cal+1)



Validity with Missing values

1

l—a< P{Yn+1 cé (X(n+1)’M("‘H)>} <l—-oa+ m



Impute then predict + conformalization

> Let ¢ : Rlobs(m)] — RImis(m)| pe o imputation function.
> Letd = (P, ,Py) : R? x {0,1}¢ — R? be a function such that

q)j(X’ M) = X]']IM/ZO + ¢;’VI(Xobs(M))]IM,-:1

Theorem (2)

Assume exchangeability holds and the imputation function ® is the output of an algorithm T
d
treating its input data points symmetrically: T <(X(”(k)) s M("U‘))):Ll) (:)
T <(X(k) s M(k))z;]) conditionally on (XU‘) s M(k))Z:: and for any permutation o. Then, the

prediction interval C (X (n+1) M (”Jrl)) satisfies
l—a<P {Y,,+1 ec (X<"+1>,M<”+‘>)}
. Also if the conformity scores s*) are almost surely distinct,

l—a< ]P{Yn+1 ec (X("“)vM("H))} st-at Geasn

is holds.



Mask-Conditional-Validity(MCV)

QR {no guarantee) CQR (marginal validily)

.';.\\"l‘l'ilj_',l' COVETAZE

P Gaussian linear regression with d = 3.
> Missingness mechanism : MCAR / Missing rate : 20%.

> Imputation : Iterative regression.



Mask-Conditional-Validity(MCV)

For any m € M,

1

l—a<P (y(nH) € Ca <X("+l>,m) | me+D = m) <l—-a+ my
a

where Cal™ = {k € Cal such that m®) C m}.



MCV

» CP-MDA-Exact : Select the data in the calibration set (Cal) that contains missing values
included in the missing columns of the test data + Additional Masking

» CP-MDA-Nested : Masking the calibration set with max-mask + temporary test point
(quantile of confidence interval induced by TTP).

CP-MDA with exact masking:

calibration set

50 | 1 [ua]na

Test point

7@ | 4 |uajnal 2
73
Initial calibration set 7@ | 0 |NA|NA|1
1
@] -1 10/ 61 CP-MDA with nested masking:
2@ 4 [wa| 2|2 calibration set temporary test points
71| -1 |NA|NA| 1 3 [NA[NA|1
PO IER R Y
5(2)(4 NA|NA| 2 3 |NA|NA| L
@[ 0 |walva| 1 F— and
73 } 5 |NA|NA|[NA 3 |NA{NA|NA
7@ LO NA[NA| 1 3 |NA|NA| 1




Theorem - MCV

Assume missing mechanism is MCAR and (Y L M)|X
» For all m € M, CP-MDA-Exact satisfies

l—a< P(Y("+1) € Ca <X("+'>,m) | M) = m) ,

> If the conformity scores s(®) are almost surely distinct, for all m € M, CP-MDA-Exact
satisfies,
1

_a< (n+1) c © (n+1) (n+1) _ <1— -
1 aill"(Y ECa<X 7m)\M m)il a+#Cal"‘+1’

where Cal™ = {k € Cal such that m®) C m}.



Theorem - MCV

Assume missing mechanism is MCAR and (Y L M)|X

> Let (m, in) € M2 If mC i# then for any 6 € [0,0.5],

Y|( (\bs(m)iM_m) Y\( obs (i) 7M='7') Y\( obs (i) sM=11) > Y| (Xobs(iny ;M=)
1-6/2 41-5/2 45,2 Z 45,2
Then, CP-MDA- Nested satisfies

l—a<P <Y<"+l) € Ca <X("+l>,m) | Mo+ = m) ,

are hold.

up to a technical minor modification of the output.
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Experiment
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