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Introduction

Main contribution
• Proposes an extension of standard conformal prediction, called

clustered conformal prediction, for classification problems. This
method constructs a prediction set that satisfies class-conditional
coverage instead of marginal coverage.

• Demonstrates through empirical evaluation that the algorithm performs
well even when the number of classes is large (more than 100) and the
data is limited.
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Background



Standard Conformal Prediction

• Consider a calibration data set {(Xi,Yi)}Ni=1 and a test point (Xtest,Ytest),
where Xi ∈ X, Yi ∈ Y, drawn from distribution F.

• Standard conformal prediction (STANDARD) creates a prediction set
that satisfies marginal coverage:

P(Ytest ∈ C(Xtest)) ≥ 1 − α,

for a coverage level α ∈ [0, 1].
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Standard Conformal Prediction

Procedure of STANDARD

1. Given a pre-trained classifier f , define a nonconformity score function
s : X ×Y → R.
(A simple example is s(x, y) = 1 − fy(x), where fy(x) represents the yth entry of the
softmax vector output by f for the input x.)

2. Evaluate the score of every calibration data point as si = s(Xi,Yi).

3. Compute the (1 − α) quantile of the empirical distribution defined by {si}
N
i=1:

q̂ = Quantile
(
⌈(N − 1)(1 − α)⌉

N
, {si}

N
i=1

)
.

4. Construct prediction set:

CSTANDARD(Xtest) =
{
y ∈ Y : s(Xtest, y) ≤ q̂

}
.

⇒ The core problem is that even though the average performance of the algorithm is
good, the performance for some classes is quite poor.
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Classwise Conformal Prediction

• Classwise conformal prediction (CLASSWISE) creates a prediction set that
satisfies class-conditional coverage:

P(Ytest ∈ C(Xtest) | Ytest = y) ≥ 1 − α, for all y ∈ Y,

for a coverage level α ∈ [0, 1].

• Use (1 − α) quantile of the empirical distribution of each class defined by {si}i∈Iy ,
where Iy = {i ∈ {1, ...,N} : Yi = y}:

q̂y = Quantile
(
⌈(|Iy| − 1)(1 − α)⌉

|Iy|
, {si}i∈Iy

)
• The prediction set is constructed using a different threshold for each class:

CCLASSWISE(Xtest) =
{
y ∈ Y : s(Xtest, y) ≤ q̂y}.
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Clustered Conformal Prediction



Clusered Conformal Prediction

Clusered conformal prediction (CLUSTERED) clusters classes having similar
conformal score distributions.

1. Randomly split the calibration data set into two parts: the clustering data set
D1 = {(Xi,Yi) : i ∈ I1} and a proper calibration data set D2 = {(Xi,Yi) : i ∈ I2}.

2. Apply a clustering algorithm to D1 to obtain a clustering function
ĥ : Y → {1, ...,M} ∪ {null}.

3. Evaluate the score of the data points in D2, and compute the (1 − α) quantile,
q̂(ĥ(y)), of the empirical distribution of each cluster.
(For the null cluster, the quantile is computed using the entire data point in D2,
just as in STANDARD.)

4. The prediction set is constructed using a different threshold for each cluster:

CCLUSTERED(Xtest) =
{
y ∈ Y : s(Xtest, y) ≤ q̂(ĥ(y))

}
.
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Clusered Conformal Prediction

Proposition 1

The prediction sets C = CCLUSTERED from CLUSTERED achieve
cluster-conditional coverage:

P(Ytest ∈ C(Xtest | ĥ(Ytest = m)) ≥ 1 − α, for all clusters m = 1, ...,M.

Proposition 2

If ĥ = h∗, where h∗ is an oracle clustering function that produces clusters of
classes with the same score distribution, then the prediction sets from
CLUSTERED satisfy class-conditional coverage for all classes y such that
h∗ , null.

⇒ Therefore, we need to find a clustering function that clusters classes that
have similar score distributions.
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Quantile-based clustering

Procedure of clustering

1. Denote by Iy
1 = {i ∈ I1 : Yi = y} the indices of examples in D1 with label y.

2. Compute quantiles of the scores {si}i∈Iy
1

from class y at the levels

T =

{ ⌈(|Iy
1| + 1)τ⌉
|I

y
1|

: τ ∈ {0.5, 0.6, 0.7, 0.8, 0.9} ∪ {1 − α}
}
,

and collect them into an embedding vector zy ∈ R|T |.

3. If |Iy
1| < (1/min{α, 0.1}) − 1, then the uppermost quantile in zy will not be finite, so

assign y to the null cluster.

4. For a pre-chosen number of clusters M, run k-means clustering with k = M on
the data {zy}y∈Y\Ynull , where Ynull denotes the set of labels assigned to the null
cluster.
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Quantile-based clustering

Proposition 3

Let Sy denote a random variable sampled from the score distribution for class
y, and assume that the clustering map ĥ satisfies

DKS(Sy, Sy′ ) ≤ ϵ, for all y, y′ such that ĥ(y) = ĥ(y′) , null,

where DKS(X,Y) is the Kolmogorov-Smirnov distance, which is defined
between random variables X and Y as
DKS(X,Y) = supλ∈R |P(X ≤ λ) − P(Y ≤ λ)|.
Then, for C = CCLUSTERED and for all classes y such that ĥ(y) , null,

P(Ytest ∈ C(Xtest) | Ytest = y) ≥ 1 − α − ϵ.

⇒ If the score distributions for the classes that ĥ assigns to the same cluster
are similar enough, then we can provide an approximate class-conditional
coverage guarantee.
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Experiments



Settings

• Data sets

• Base classifier: ResNet-50 fine-tuned on a small subset Dfine of the original data.

• Score function: softmax (1- softmax output of the base classifier), APS (a score
designed to improve X-conditional coverage)

• Coverage level: α = 0.1

• Size of calibration set Dcal: navg × Y, navg = {10, 20, 30, 40, 50, 75, 100, 150}

• Splitting D1 and D2: (1) Consider the size of D1 to grow with the number of
clusters, M. (2) Consider the size of D2 to have at least 150 points per cluster on
average.
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Evaluation

Evaluation metric: Average class coverage gap (CovGap)
⇒ Measures how far the class-conditional coverage is from the desired coverage level
of 1 − α in terms of the ℓ1 distance across all classes.

Figure 1: CovGap for ImageNet, CIFAR-100, Places365, and iNaturalist, for the softmax (left)
and APS (right) scores, as we vary navg.
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Conclusion



Summary

• Proposes clustered conformal prediction outperforms standard and
classwise conformal, in terms of class-conditional coverage, when there
is limited calibration data available per class.

Guidelines for Class-conditional Coverage

examples/class < 10 20 ∼ 70 75 ∼ 100 100 <
Method STANDARD CLUSTERED CLUSTERED

+CLASSWISE
CLASSWISE
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