Review: Improving UQ of Deep Classifiers via Neighborhood Conformal Prediction Subhankar Gosh et. al.

Reviewer: Jihu Lee

IDEA lab Department of Statistics Seoul National University

February 26, 2025

Jihu Lee (SNU)

Neighborhood Conformal Prediction

February 26, 2025

Outline

Conformal Prediction

- Prediction step) trained model \rightarrow conformity scores
- Calibration step) find threshold to construct prediction set using conformity scores

UQ from CP

- *coverage*: the probability that the true output is contained in prediction set
- *efficiency*: size of the prediction set (smaller is better)
- Tradeoff: *coverage* \leftrightarrow *efficiency*

Main Question

- How can we improve CP to achieve provably higher efficiency by satisfying the marginal coverage constraint for pre-trained deep classifiers?
- Propose an algorithm named Neighborhood Conformal Prediction

- $x \in \mathcal{X}$: input
- $y^* \in \mathcal{Y}$: true output
- $\mathcal{Z} = \mathcal{X} \times \mathcal{Y}$
- F_{θ} : neural network with parameters θ
- $\Phi(X)$: representation of X from F_{θ}
- $\mathcal{C}(x)$: prediction set for input x
- V(x,y): non-conformity score
- $\mathcal{B}(x) \triangleq \{x' \in \mathcal{X} : \|x x'\| \le B\}$: neighborhood size of B

Split Conformal Prediction (CP)

$$\hat{Q}^{\mathsf{CP}}(\alpha, V_{1:n}) = \min\left\{t : \sum_{i=1}^{n} \frac{1}{n} \mathbb{1}[V_i \le t] \ge 1 - \alpha\right\}$$

Algorithm 1: Split Conformal Prediction (CP)

- 1: **Input**: Significance level $\alpha \in (0, 1)$; Randomly split data into training set \mathcal{D}_{tr} and calibration set $\mathcal{D}_{cal} = \{Z_1, \dots, Z_n\}$.
- 2: If predictor F_{θ} is not given, train a prediction model F_{θ} on the training set \mathcal{D}_{tr}
- 3: Compute non-conformity score V_i for each example $Z_i \in \mathcal{D}_{cal}$
- 4: Compute $\hat{Q}^{CP}(\alpha, V_{1:n})$ as the $\lceil (1 \alpha)(1 + |\mathcal{D}_{cal}|) \rceil$ th smallest value in $\{V_i\}_{i \in \mathcal{D}_{cal}}$ as in (1).
- 5: $\hat{\mathcal{C}}(x_{n+1}) = \{y : V(x_{n+1}, y) \leq \hat{Q}^{CP}(\alpha, V_{1:n})\}$ is the prediction set for a testing input x_{n+1}

(1)

Neighborhood Conformal Prediction (NCP)

NCP quantile

$$\alpha^{\mathsf{NCP}}(\alpha) = \max\left\{\tilde{\alpha} : \sum_{i=1}^{n} \frac{1}{n} \mathbb{1}[V_i \le \hat{Q}^{\mathsf{NCP}}(\tilde{\alpha}; V_{1:n}; p_{i,1:n})] \ge 1 - \alpha\right\}$$
(2)

$$\hat{Q}^{\mathsf{NCP}}(\tilde{\alpha}, V_{1:n}; p_{i,1:n}) = \min\left\{t : \sum_{j=1}^{n} p_{i,j}\mathbb{1}[V_j \le t] \ge 1 - \tilde{\alpha}\right\}$$

Basic case

$$p_{i,j} = \frac{\mathbb{1}\left[\Phi(X_j) \in \mathcal{B}(\Phi(X_i))\right]}{\sum_{k \in \mathcal{D}_{cal}} \mathbb{1}\left[\Phi(X_k) \in \mathcal{B}(\Phi(X_i))\right]}$$
(3)

Special case

$$IW(x_i, x_j) = \exp\left(-\frac{dist(\Phi(x_i), \Phi(x_j))}{\lambda_L}\right)$$
(4)

$$p_{i,j}^{exp} = \frac{IW(x_i, x_j)}{\sum_{k \in \mathcal{D}_{cal(KNN)}} IW(x_i, x_k)}$$
(5)

э

Algorithm 2: Neighborhood Conformal Prediction (NCP)

- 1: **Input**: Significance level $\alpha \in (0, 1)$. Randomly split data into training set \mathcal{D}_{tr} and calibration set $\mathcal{D}_{cal} = \{Z_1, \dots, Z_n\}$.
- 2: If predictor F_{θ} is not given, train a prediction model F_{θ} on the training set \mathcal{D}_{tr} .
- 3: Compute non-conformity score V_i for $Z \in \mathcal{D}_{cal}$
- 4: Compute importance weights $p_{i,j}$ for $X_i, X_j \in \mathcal{D}_{cal}$ needed to identify *neighborhood* according to (3 or 5)
- 5: Find α^{NCP} in (2) on \mathcal{D}_{cal} and set $\hat{\mathcal{C}}(X_{n+1}) = \{y : V(X_{n+1}, y) \leq \hat{Q}(\alpha^{\text{NCP}}, V_{1:n+1}, p_{n+1,1:n+1})\}$ as the prediction set for the new data sample X_{n+1}

Theorem 1

Let
$$Q^{CP}(\alpha) \triangleq \min\{t : \mathbb{P}_X\{V(X, F^*(X)) \le t\} \ge 1 - \alpha\},\ \alpha^{NCP}(\alpha) \triangleq \max\{\tilde{\alpha} : \mathbb{P}_X\{X \le Q^{NCP}(\tilde{\alpha}; X)\} \ge 1 - \alpha\},\ where Q^{NCP}(\tilde{\alpha}; X) \triangleq \min\{t : \mathbb{P}_{X'}\{V(X'; F^*(X)) \le t, X' \in \mathcal{N}_{\mathcal{B}}(X)\} \ge 1 - \tilde{\alpha}\}\$$
in population.

Then to achieve the same α , NCP gives smaller expected quantile and can be more efficient than CP, under some conditions:

$$\mathbb{E}_X[Q^{NCP}(\alpha; X)] \le Q^{CP}(\alpha)$$

Regression

- Dataset: BlogFeedback, Gas turbine, Facebook_i, MEPS_i
- Model: MLP with 3 hidden layers with 15, 20, 30 nodes
- Non-conformity score: $V(x,y^*) = |y^* F_\theta(x)|$

Classification

- Dataset: CIFAR10, CIFAR100, ImageNet
- Model: ResNet architectures
- Conformity score: APS, RAPS

						Dataset	CP	NCP
						BlogFeedback	44.79(2.78)	18.97(2.42)
Model	Naive	APS	RAPS	NCP(APS)	NCP(RAPS)	Gas turbine	16.69(1.47)	12.94(1.11)
ImageNet($1 - \alpha = 0.900$)						Facabook 1	50.06(5.72)	21.80(7.27)
ResNet152	10.55(0.548)	11.34(0.843)	2.53(0.054)	5.24(0.312)	2.12(0.007)	Facebook_1	50.90(5.72)	21.09(1.27)
ResNet101	10.85(0.588)	11.36(0.615)	2.63(0.08)	5.60(0.278)	2.25(0.098)	Facebook 2	44 12(3 85)	21 28(6 55)
ResNet50	12.00(0.530)	13.24(0.892)	2.94(0.089)	6.44(0.381)	2.54(0.091)	Tacebook_2	44.12(3.65)	21.28(0.55)
ResNet18	16.13(0.642)	17.05(1.100)	5.00(0.220)	11.08(0.598)	4.71(0.251)	Facebook 2	46.08(4.01)	20 72(0 50)
ResNeXt101	18.57(1.05)	20.57(1.10)	2.36(0.069)	8.24(0.388)	2.01(0.060)	racebook_5	40.96(4.01)	39.13(9.39)
DenseNet161	11.70(0.730)	12.86(1.21)	2.67(0.074)	5.89(0.447)	2.29(0.103)	Facabook 4	16 78(5 25)	24.01(11.76)
VGG16	13.91(0.867)	14.10(0.486)	3.97(0.098)	8.56(0.382)	3.62(0.106)	Facebook_4	40.76(3.33)	34.01(11.70)
Inception	77.51(3.78)	90.28(4.16)	5.96(0.373)	66.29(2.83)	5.67(0.178)	Facebook 5	45 35(0.65)	13 73(5 55)
ShuffleNet	30.33(1.64)	34.31(2.10)	5.53(0.070)	22.36(1.37)	5.49(0.131)	Tacebook_5	45.55(0.05)	45.75(5.55)
CIFAR100 $(1 - \alpha = 0.900)$						MEDS 10	54.00(2.64)	25 62(2 54)
ResNet18	5.07(0.327)	5.57(0.224)	3.17(0.076)	3.61(0.164)	2.77(0.100)	WIEFS_19	54.99(2.04)	35.05(2.54)
ResNet50	8.21(0.746)	8.02(0.405)	3.37(0.189)	4.26(0.233)	2.96(0.213)	MEDS 20	18 85(2 22)	22 85(2 52)
ResNet101	4.44(0.348)	4.64(0.184)	2.60(0.066)	2.80(0.188)	2.19(0.073)	WILL 5_20	40.05(2.22)	33.83(3.33)
$CIFAR10(1 - \alpha = 0.960)$						MEPS 21	61 46(7 49)	36.01(5.10)
ResNet18	1.20(0.016)	1.25(0.021)	1.24(0.014)	1.07(0.013)	1.06(0.012)	WILL 5_21	01.40(7.49)	30.01(3.10)
ResNet50	1.15(0.013)	1.19(0.021)	1.17(0.011)	1.05(0.010)	1.04(0.005)	Concrete	50.27(0.23)	50.42(0.62)
ResNet101	1.17(0.017)	1.20(0.018)	1.19(0.017)	1.04(0.008)	1.03(0.007)	Concrete	57.27(0.23)	50.72(0.02)

(a) Classification

(b) Regression

Figure 1: Mean prediction set sizes, with the mean and s.d. over 5 (a) and 10 (b) runs.

3

 Ghosh, Subhankar, et al. "Improving uncertainty quantification of deep classifiers via neighborhood conformal prediction: Novel algorithm and theoretical analysis." Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 37. No. 6. 2023.

Jihu Lee (SNU)

Neighborhood Conformal Prediction

February 26, 2025

イロト イポト イヨト イヨト

11/11

3