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Problem Formulation

Figure 1: The human expert receives the recommended subset C(x),
together with the sample, and predicts a label ŷ from C(x) according to a

policy π(x , C(x)).
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Problem Formulation: Notation

• x ∈ X : feature vector with x ∼ P(X ).

• y ∈ Y = {1, · · · , n} : label with y ∼ P(Y |X ).

• DProp : Proper training set having n data.

• DCal : Calibration set having m data.

• Dest : Estimation set having m data.

• f̂ : X → [0, 1]|Y| : trained classifier.
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Problem Formulation: Notation

• C : X → 2Y : Automated Decision Support System with

C(x) ⊂ Y using a trained classifier f̂ .

• ∆(Y) : Probability simplex over the set of labels Y.
• π : X × 2Y → ∆(Y) : expert’s prediction policy.

• P[Ŷ = Y ; C] : the expert’s success probability if the human

expert predicts a label Ŷ among those in the subset C(x).
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Problem Formulation: Goal

• Author want expert can only benefit from using the

automated decision support system C, i.e.,

P[Ŷ = Y | C] ≥ P[Ŷ = Y | Y] (1)

• Among those systems satisfying Eq (1), would like to find the

system C∗ that helps the experts achieve the highest success

probability, i.e.,

C∗ = argmax
C

P[Ŷ = Y | C]. (2)

• To address the design of such a system, we will look at the

problem from the perspective of conformal prediction.
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Subset Selection using Conformal Prediction

• If the classifier f̂ trained by DProp, let

si = 1− f̂ (xi ), (xi , yi ∈ DCal , i = 1, · · · ,m) be conformal

score.

• And q̂α is the ⌈(m+1)(1−α)⌉
m empirical quantile of the conformal

scores.

• Then, if construct the subsets Cα(X ) for new data samples as

follows:

Cα(X ) = {y | s(X , y) ≤ q̂α}. (3)
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Subset Selection using Conformal Prediction

Theorem 1

For an automated decision support system Cα that constructs the

subsets Cα(X ) using Eq. (3), it holds that

1− α ≤ P[Y ∈ Cα(X )] ≤ 1− α+
1

m + 1
,

where the probability is over the randomness in the sample it

helps predicting and the calibration set used to compute the

empirical quantile q̂α.

Proof : Refer to Appendix D in Angelopoulos and Bates (2021).
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Subset Selection using Conformal Prediction

• The problem is that, how to choose the α?

• If α is too small then, Cα(X ) is too large so that it is useless.

• But, if α is too large then, it is more probability Cα(X ) give

wrong answer.

• So, author suggest the way to choose optimal α.
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Subset Selection using Conformal Prediction

Figure 2: Relationship between α and Cα(X ).
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Basic concept

• To find the optimal conformal predictor that maximizes the

expert’s success probability, we need to solve the following

maximization problem:

α∗ = argmax
α∈A

P[Ŷ = Y | Cα], (4)

where A = {αi}i∈[m], with αi = 1− i/(m + 1).
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Assumption

• To solve optimization problem (4) we need some assumption.

• Assume that author can access to (an estimation of) the

confusion matrix C for the expert predictions in the (original)

multiclass classification task i.e.,

C = [Cyy ′ ]y ,y ′∈Y , where Cyy ′ = P[Ŷ = y ′ | Y = y ].

• Moreover, given a sample (x , y), we assume that the expert’s

conditional success probability for the subset Cα(x) is given by

P[Ŷ = y ; Cα | y ∈ Cα(x)] =
Cyy∑

y ′∈Cα(x) Cyy ′
. (5)
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Estimation

• Then, we can compute a Monte-Carlo estimator µ̂α of the

expert’s success probability P[Ŷ = Y ; Cα] using the above

conditional success probability P[Ŷ = y ; Cα | y ∈ Cα(x)] and
an estimation set Dest = {(xi , yi )}i∈[m], i.e.,

µ̂α =
1

m

∑
i∈[m]|yi∈Cα(xi )

P[Ŷ = yi ; Cα | yi ∈ Cα(xi )]. (6)

• Then E(µ̂α) = P[Ŷ = Y ; Cα] and P[Ŷ = yi ; Cα | yi ∈ Cα(xi )]
is in [0, 1], we can apply Hoeffding’s inequality.
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Estimation

Lemma 1 (Hoeffding’s Inequality)

Let Z1, . . . ,Zk be i .i .d ., with Zi ∈ [a, b], i = 1, . . . , k, a < b and

µ̂ be the empirical estimate

µ̂ =

∑k
i=1 Zi

k

of E[Z ] = E[Zi ]. Then:

P[|µ̂− E[Z ] ≥ ϵ|] ≤ 2 exp

(
−2kϵ2

(b − a)2

)
(7)

hold for all ϵ ≥ 0.
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Estimation

Theorem 2

Under E.q. (6) following inequalities hold,

P
(∣∣∣µ̂α − P[Ŷ = Y ; Cα]

∣∣∣ ≤ ϵδ

)
≥ 1− δ, for each α ∈ A (8)

and,

P
(
max
α∈A

∣∣∣µ̂α − P[Ŷ = Y ; Cα]
∣∣∣ ≤ ϵδ/m

)
≥ 1− δ (9)

and, , where ϵδ =

√
log 1

δ
2m

Proof: Use Hoeffding’s Inequality to proof inequality (8) and

Bonferroni correction technique to proof inequality (9).

16



Optimization

• Inequality (9) means that, with probability at least 1− δ, it

holds that P[Ŷ = Y ; Cα] ≥ µ̂α− ϵδ/m, ∀α ∈ A simultaneously.

• For any δ ∈ (0, 1), consider an automated decision support

system Cα̂ with

α̂ = argmax
α∈A

(
µ̂α − ϵδ/m

)
. (10)

• This paper does not explicitly mention why α̂ is determined in

this way, but I think it means maximizing the minimum value

of the probability P[Ŷ = Y ; Cα] to be estimated.

• α̂ can be obtain we calculate m′th µ̂α − ϵδ/m for all α ∈ A.
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Algorithm 1 Finding a near-optimal α̂

Require: f̂ ,Dest,Dcal, δ,m

1: Initialize: A = {}, α̂← 0, t ← 0

2: for i = 1, ...,m do

3: α← 1− i
m+1

4: A ← A∪ {α}
5: end for

6: for α ∈ A do

7: µα, ϵδ/m← ESTIMATE(α, δ,Dest,Dcal, f̂ )

8: if t ≤ µα − ϵδ/m then

9: t ← µα − ϵδ/m

10: α̂← α

11: end if

12: end for

13: return α̂
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Experiment

Figure 3: Testing on the CIFAR-10H dataset.
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