# Improving Expert Predictions with Conformal Prediction - ICML 2023

Shin Yun Seop

February 25, 2025

Seoul national university, statistics, IDEA LAB

#### **Improving Expert Predictions with Conformal Prediction**

Eleni Straitouri<sup>1</sup> Lequn Wang<sup>2</sup> Nastaran Okati<sup>1</sup> Manuel Gomez Rodriguez<sup>1</sup>

#### 1. Introduction

- 1.1. Problem Formulation
- 1.2. Subset Selection using Conformal Prediction
- 2. Optimizing Across Conformal Predictors
   2.1. Optimization the Conformal Predictors
   2.2. Experiment
- 3. Reference

#### **Problem Formulation**



**Figure 1:** The human expert receives the recommended subset C(x), together with the sample, and predicts a label  $\hat{y}$  from C(x) according to a policy  $\pi(x, C(x))$ .

- $x \in \mathcal{X}$  : feature vector with  $x \sim P(X)$ .
- $y \in \mathcal{Y} = \{1, \cdots, n\}$ : label with  $y \sim P(Y|X)$ .
- $\mathcal{D}_{Prop}$ : Proper training set having *n* data.
- $\mathcal{D}_{Cal}$  : Calibration set having *m* data.
- $\mathcal{D}_{est}$  : Estimation set having *m* data.
- $\hat{f}: \mathcal{X} \to [0, 1]^{|\mathcal{Y}|}$  : trained classifier.

- $C: \mathcal{X} \to 2^{\mathcal{Y}}$ : Automated Decision Support System with  $C(x) \subset \mathcal{Y}$  using a trained classifier  $\hat{f}$ .
- $\Delta(\mathcal{Y})$  : Probability simplex over the set of labels  $\mathcal{Y}$ .
- $\pi:\mathcal{X} imes 2^{\mathcal{Y}} o \Delta(\mathcal{Y}):$  expert's prediction policy.

#### Problem Formulation: Goal

• Author want expert can only benefit from using the automated decision support system *C*, i.e.,

$$\mathbb{P}[\hat{Y} = Y \mid \mathcal{C}] \ge \mathbb{P}[\hat{Y} = Y \mid \mathcal{Y}]$$
(1)

 Among those systems satisfying Eq (1), would like to find the system C\* that helps the experts achieve the highest success probability, i.e.,

$$\mathcal{C}^* = \arg \max_{\mathcal{C}} \mathbb{P}[\hat{Y} = Y \mid \mathcal{C}].$$
(2)

• To address the design of such a system, we will look at the problem from the perspective of conformal prediction.

- If the classifier *f̂* trained by D<sub>Prop</sub>, let
   s<sub>i</sub> = 1 − *f̂*(x<sub>i</sub>), (x<sub>i</sub>, y<sub>i</sub> ∈ D<sub>Cal</sub>, i = 1, · · · , m) be conformal score.
- And  $\hat{q}_{\alpha}$  is the  $\frac{\lceil (m+1)(1-\alpha) \rceil}{m}$  empirical quantile of the conformal scores.
- Then, if construct the subsets C<sub>α</sub>(X) for new data samples as follows:

$$\mathcal{C}_{\alpha}(X) = \{ y \mid s(X, y) \le \hat{q}_{\alpha} \}.$$
(3)

#### Theorem 1

For an automated decision support system  $C_{\alpha}$  that constructs the subsets  $C_{\alpha}(X)$  using Eq. (3), it holds that

$$1-lpha \leq \mathbb{P}[Y \in \mathcal{C}_{lpha}(X)] \leq 1-lpha + rac{1}{m+1},$$

where the probability is over the randomness in the sample it helps predicting and the calibration set used to compute the empirical quantile  $\hat{q}_{\alpha}$ .

Proof : Refer to Appendix D in Angelopoulos and Bates (2021).

- The problem is that, how to choose the  $\alpha$ ?
- If  $\alpha$  is too small then,  $\mathcal{C}_{\alpha}(X)$  is too large so that it is useless.
- But, if α is too large then, it is more probability C<sub>α</sub>(X) give wrong answer.
- So, author suggest the way to choose optimal  $\alpha$ .

#### Subset Selection using Conformal Prediction



**Figure 2:** Relationship between  $\alpha$  and  $C_{\alpha}(X)$ .

#### 1. Introduction

- 1.1. Problem Formulation
- 1.2. Subset Selection using Conformal Prediction

## 2. Optimizing Across Conformal Predictors

- 2.1. Optimization the Conformal Predictors
- 2.2. Experiment

#### 3. Reference

• To find the optimal conformal predictor that maximizes the expert's success probability, we need to solve the following maximization problem:

$$\alpha^* = \arg \max_{\alpha \in \mathcal{A}} \mathbb{P}[\hat{Y} = Y \mid \mathcal{C}_{\alpha}], \tag{4}$$

where  $\mathcal{A} = \{\alpha_i\}_{i \in [m]}$ , with  $\alpha_i = 1 - i/(m+1)$ .

#### Assumption

- To solve optimization problem (4) we need some assumption.
- Assume that author can access to (an estimation of) the confusion matrix C for the expert predictions in the (original) multiclass classification task i.e.,

$$\mathbf{C} = [C_{yy'}]_{y,y'\in\mathcal{Y}}, \quad ext{where } C_{yy'} = \mathbb{P}[\hat{Y} = y' \mid Y = y].$$

Moreover, given a sample (x, y), we assume that the expert's conditional success probability for the subset C<sub>α</sub>(x) is given by

$$\mathbb{P}[\hat{Y} = y; \mathcal{C}_{\alpha} \mid y \in \mathcal{C}_{\alpha}(x)] = \frac{C_{yy}}{\sum_{y' \in \mathcal{C}_{\alpha}(x)} C_{yy'}}.$$
 (5)

• Then, we can compute a Monte-Carlo estimator  $\hat{\mu}_{\alpha}$  of the expert's success probability  $\mathbb{P}[\hat{Y} = Y; \mathcal{C}_{\alpha}]$  using the above conditional success probability  $\mathbb{P}[\hat{Y} = y; \mathcal{C}_{\alpha} \mid y \in \mathcal{C}_{\alpha}(x)]$  and an estimation set  $\mathcal{D}_{est} = \{(x_i, y_i)\}_{i \in [m]}$ , i.e.,

$$\hat{\mu}_{\alpha} = \frac{1}{m} \sum_{i \in [m] | y_i \in \mathcal{C}_{\alpha}(x_i)} \mathbb{P}[\hat{Y} = y_i; \mathcal{C}_{\alpha} \mid y_i \in \mathcal{C}_{\alpha}(x_i)].$$
(6)

• Then  $\mathbb{E}(\hat{\mu}_{\alpha}) = \mathbb{P}[\hat{Y} = Y; \mathcal{C}_{\alpha}]$  and  $\mathbb{P}[\hat{Y} = y_i; \mathcal{C}_{\alpha} \mid y_i \in \mathcal{C}_{\alpha}(x_i)]$ is in [0, 1], we can apply Hoeffding's inequality.

#### Lemma 1 (Hoeffding's Inequality)

Let  $Z_1, \ldots, Z_k$  be i.i.d., with  $Z_i \in [a, b], i = 1, \ldots, k$ , a < b and  $\hat{\mu}$  be the empirical estimate

$$\hat{u} = \frac{\sum_{i=1}^{k} Z_i}{k}$$

of  $\mathbb{E}[Z] = \mathbb{E}[Z_i]$ . Then:

$$[|\hat{\mu} - \mathbb{E}[Z] \ge \epsilon|] \le 2 \exp\left(\frac{-2k\epsilon^2}{(b-a)^2}\right) \tag{7}$$

hold for all  $\epsilon \geq 0$ .

P

#### Theorem 2

Under E.q. (6) following inequalities hold,

$$\mathbb{P}\left(\left|\hat{\mu}_{\alpha} - \mathbb{P}[\hat{Y} = Y; \mathcal{C}_{\alpha}]\right| \le \epsilon_{\delta}\right) \ge 1 - \delta, \text{ for each } \alpha \in \mathcal{A}$$
(8)

and,

a

$$\mathbb{P}\left(\max_{\alpha\in\mathcal{A}}\left|\hat{\mu}_{\alpha}-\mathbb{P}[\hat{Y}=Y;\mathcal{C}_{\alpha}]\right|\leq\epsilon_{\delta/m}\right)\geq1-\delta$$
(9)
  
Ind., where  $\epsilon_{\delta}=\sqrt{\frac{\log\frac{1}{\delta}}{2m}}$ 

<u>Proof</u>: Use Hoeffding's Inequality to proof inequality (8) and Bonferroni correction technique to proof inequality (9).

# Optimization

- Inequality (9) means that, with probability at least 1 − δ, it holds that P[Ŷ = Y; Cα] ≥ μ̂α − ϵδ/m, ∀α ∈ A simultaneously.
- For any δ ∈ (0,1), consider an automated decision support system C<sub>α̂</sub> with

$$\hat{\alpha} = \arg\max_{\alpha \in \mathcal{A}} \left( \hat{\mu}_{\alpha} - \epsilon_{\delta/m} \right).$$
(10)

- This paper does not explicitly mention why â is determined in this way, but I think it means maximizing the minimum value of the probability P[Ŷ = Y; C<sub>α</sub>] to be estimated.
- $\hat{\alpha}$  can be obtain we calculate  $m'th \ \hat{\mu}_{\alpha} \epsilon_{\delta/m}$  for all  $\alpha \in \mathcal{A}$ .

## **Algorithm 1** Finding a near-optimal $\hat{\alpha}$

**Require:** 
$$\hat{f}, \mathcal{D}_{est}, \mathcal{D}_{cal}, \delta, m$$
  
1: Initialize:  $\mathcal{A} = \{\}, \hat{\alpha} \leftarrow 0, t \leftarrow 0$   
2: for  $i = 1, ..., m$  do  
3:  $\alpha \leftarrow 1 - \frac{i}{m+1}$   
4:  $\mathcal{A} \leftarrow \mathcal{A} \cup \{\alpha\}$   
5: end for  
6: for  $\alpha \in \mathcal{A}$  do  
7:  $\mu_{\alpha}, \epsilon_{\delta}/m \leftarrow \text{ESTIMATE}(\alpha, \delta, \mathcal{D}_{est}, \mathcal{D}_{cal}, \hat{f})$   
8: if  $t \leq \mu_{\alpha} - \epsilon_{\delta}/m$  then  
9:  $t \leftarrow \mu_{\alpha} - \epsilon_{\delta}/m$   
10:  $\hat{\alpha} \leftarrow \alpha$   
11: end if  
12: end for  
13: return  $\hat{\alpha}$ 

|                             | CLASSIFIER                                    | Expert using $\mathcal{C}_{\hat{lpha}}$       |
|-----------------------------|-----------------------------------------------|-----------------------------------------------|
| ResNet-110<br>PreResNet-110 | $\begin{array}{c} 0.928 \\ 0.944 \end{array}$ | $\begin{array}{c} 0.981 \\ 0.983 \end{array}$ |
| DENSENET                    | $0.944 \\ 0.964$                              | 0.983<br>0.987                                |

Figure 3: Testing on the CIFAR-10H dataset.

#### 1. Introduction

- 1.1. Problem Formulation
- 1.2. Subset Selection using Conformal Prediction
- Optimizing Across Conformal Predictors
   2.1. Optimization the Conformal Predictors
   2.2 Experiment
- 3. Reference

- Straitouri, Eleni, et al. "Improving expert predictions with conformal prediction." International Conference on Machine Learning. PMLR, 2023.
- Angelopoulos, Anastasios N., and Stephen Bates. "A gentle introduction to conformal prediction and distribution-free uncertainty quantification." arXiv preprint arXiv:2107.07511 (2021).
- Kerrigan, Gavin, Padhraic Smyth, and Mark Steyvers.
   "Combining human predictions with model probabilities via confusion matrices and calibration." Advances in Neural Information Processing Systems 34 (2021): 4421-4434.