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Figure 1: The human expert receives the recommended subset C(x),
together with the sample, and predicts a label y from C(x) according to a

policy 7(x,C(x)).



Problem Formulation: Notation

x € X : feature vector with x ~ P(X).
yeY=A{1,---,n} : label with y ~ P(Y|X).

Dprop : Proper training set having n data.

Dcar : Calibration set having m data.

Dest : Estimation set having m data.

f: & — [0, 1]” : trained classifier.



Problem Formulation: Notation

e C: X —2Y: Automated Decision Support System with
C(x) C Y using a trained classifier .

A(Y) : Probability simplex over the set of labels V.
o m: X x2Y = A(Y) : expert’s prediction policy.

P[Y = Y;C] : the expert’s success probability if the human
expert predicts a label ¥ among those in the subset C(x).



Problem Formulation: Goal

e Author want expert can only benefit from using the
automated decision support system C, i.e.,

P[Y =Y |C]>P[Y =Y |)] (1)

e Among those systems satisfying Eq (1), would like to find the
system C* that helps the experts achieve the highest success
probability, i.e.,

c*:argmcaxp[f/: Y |C]. (2)

e To address the design of such a system, we will look at the
problem from the perspective of conformal prediction.



Subset Selection using Conformal Prediction

o If the classifier f trained by Dprop, let
si=1-— f(x,-), (xi,¥i € Dcayy i =1,---, m) be conformal
score.

e And g, is the W empirical quantile of the conformal
scores.

e Then, if construct the subsets C,(X) for new data samples as

follows:
Ca(X) ={y | s(X,y) < da}. (3)



Subset Selection using Conformal Prediction

Theorem 1

For an automated decision support system C,, that constructs the
subsets C,(X) using Eq. (3), it holds that

1
l—a<PlYeCuX)]<l—a+——,
a <P[Y € Cu(X)] < a+m+1

where the probability is over the randomness in the sample it
helps predicting and the calibration set used to compute the
empirical quantile g .

Proof : Refer to Appendix D in Angelopoulos and Bates (2021).



Subset Selection using Conformal Prediction

The problem is that, how to choose the a7

e If v is too small then, C,(X) is too large so that it is useless.

But, if « is too large then, it is more probability C,(X) give
wrong answer.

So, author suggest the way to choose optimal «.



Subset Selection using Conformal Prediction
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Figure 2: Relationship between « and C,(X).
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2. Optimizing Across Conformal Predictors
2.1. Optimization the Conformal Predictors

2.2. Experiment
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e To find the optimal conformal predictor that maximizes the
expert's success probability, we need to solve the following

maximization problem:
o = argmaxP[Y = Y | Cd], 4
gae Xl [ | Cal (4)

where A = {a;}ic[m), With a; =1 —i/(m+1).
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e To solve optimization problem (4) we need some assumption.

e Assume that author can access to (an estimation of) the
confusion matrix C for the expert predictions in the (original)
multiclass classification task i.e.,

C=[Cylyyecy, where Cy, = IP’[)A/ =y |Y=y]

e Moreover, given a sample (x, y), we assume that the expert's
conditional success probability for the subset C,(x) is given by

ny

P[Y =y:Cy|ly €Co(X)] = =——2 .
[Y=yiCaly (x)] > eeno G

(5)
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e Then, we can compute a Monte-Carlo estimator [i, of the
expert's success probability IP[\A’ =Y, C,] using the above
conditional success probability P[Y = y;C, | y € Ca(x)] and
an estimation set Degt = {(x,-,y,-)},-e[m], ie.,

fla== > PIY =yiiCalyi€Ca(x)].  (6)
i€[m]|yi€Ca(x)

o Then E(fia) = P[Y = Y;Cu] and P[Y = y;;:Co | yi € Ca(xi)]
is in [0, 1], we can apply Hoeffding's inequality.
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Estimation

Lemma 1 (Hoeffding’s Inequality)

Let Zy,...,Z bei.id., with Z; € [a,b],i=1,...,k, a< b and

{i be the empirical estimate

M= K

of E[Z] = E[Z]. Then:

—2ke?
Pl1a — E12] > ) < 2000 (o ) @

hold for all € > 0.



Estimation

Theorem 2

Under E.q. (6) following inequalities hold,
P

fia —P[Y = Y;C4]

Seg) >1-—94, foreachae A (8)
and,

P ‘g-PV:Yﬁa
(2*:2 fio = P 1

< €§/m> > il =d
Iog%
and, , where €5 =

(9)
2m

Proof: Use Hoeffding's Inequality to proof inequality (8) and

Bonferroni correction technique to proof inequality (9).



Optimization

e Inequality (9) means that, with probability at least 1 — ¢, it
holds that ]P’[\A/ =Y,;Co] > fla — €5/m» Vo € A simultaneously.

e forany ¢ € (0,1), consider an automated decision support
system Cg with

& = argmax (flo — 65/,,,) . (10)
acA

e This paper does not explicitly mention why & is determined in
this way, but | think it means maximizing the minimum value
of the probability P[Y = Y;Cq] to be estimated.

e & can be obtain we calculate m'th fi, — €5/, for all a € A.
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Algorithm 1 Finding a near-optimal &

Require: f, Dest, Deal, 6, m

[arsy

10:
11:
12:
13:

R P XN PP RR

. Initialize: A= {},& <+ 0,t+ 0
cfori=1,...,mdo
a+—1-— mfﬁ-l
A+~ AU{a}
end for
for a« € A do
fier, €5/m < ESTIMATE(v, 8, Dest, Deat, )
if t < pq —es/m then
t < po —€5/m

&+ «
end if
end for
return &
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CLASSIFIER ~ EXPERT USING Cg

RESNET-110 0.928 0.981
PrRERESNET-110 0.944 0.983
DENSENET 0.964 0.987

Figure 3: Testing on the CIFAR-10H dataset.
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