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Introduction

Derandomized novelty detection with FDR control via conformal
e-values

• Novelty detection = Anomaly detection = Outlier detection

• Conformal inference = Conformal prediction

• Conformity score = Anomaly score
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Introduction

Derandomized novelty detection with FDR control via conformal
e-values

1 Problem - The results of conformal inference change because it
has randomness in train-calibration set splitting.
▶ Solution : A weighted sum of p-values.

2 Problem - The traditional method has difficulty controlling the
False Discovery Rate (FDR).
▶ Solution : Instead of the traditional p-value that depends on

the rank of the calibration set, a conformal e-value is used.
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Traditional conformal anomaly detection

H0k : The point xk of test set is also an inlier

• If pk < α, then H0k is rejected. So, xk is outlier.

Conformal p-value

pi =
1 +

∑
j∈C 1 (sj ≥ si )

|C|+ 1

• C : Calibration set

• sj and si : The conformity scores for callibration and test points

• f (·) : A conformity score function trained so that inlier data has a
label of 0 and outlier data has a label of 1, si = f (xi )
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Main contributions

A weighted sum of conformal e-values

ēj =
K∑

k=1

w (k)e
(k)
j ,

K∑
k=1

w (k) = 1

• e
(k)
j : The k-th conformal e-value

• w (k) : The k-th weight

• k : The k-th split repetition
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Main contributions

Conformal e-value

e
(k)
j = (1 + ncal ) ·

I
{
Ŝ
(k)
j ≥ t̂(k)

}
1 +

∑
i∈D(k)

cal
I
{
Ŝ
(k)
i ≥ t̂(k)

}
t̂(k) = min

{
t ∈ D̃(k)

cal-test : F̂DP
(k)

(t) ≤ α

}
where D̃(k)

cal-test =
{
Ŝ
(k)
i

}
i∈Dtest ∪D(k)

cal

F̂DP
(k)

(t) =
ntest

ncal
·

∑
i∈D(k)

cal
I
{
Ŝ
(k)
i ≥ t

}
∑

j∈Dtest
I
{
Ŝ
(k)
j ≥ t

}

• D = {1, . . . , n} : The index set of the observed samples.
• k : The k-th split repetition
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Main contributions

Conformal e-value - FDP : The empirical FDR

FDR = E

 ∑
j∈Dnull

test

Rj

 /max

1,
∑

j∈Dtest

Rj




F̂DP(t) =
ntest

ncal
·

∑
i∈Dcal

I
{
Ŝi ≥ t

}
∑

j∈Dtest
I
{
Ŝj ≥ t

}
• D = {1, . . . , n} : The index set of the observed samples.

• Dnull
test : The set of true inlier test points.

• Rj : Whether it was predicted as an outlier.

• k : The k-th split repetition.
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Main contributions

Conformal e-value

e(1) ≥ e(2) ≥ · · · ≥ e(n)

x(i) is outlier when ē(i) ≥
1
α
· i

ntest

• ē(i) : The i-th value in the weighted sum of e-values sorted in
descending order.

• ntest : The number of points in the test set.

• D = {1, . . . , n} : The index set of the observed samples.

• α : The significance level.
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Main contributions

Theorem
If the inliers in D and the null test points are exchangeable
conditional on the non-null test points, then weighted e-value method
guarantees FDR ≤ α.

• D = {1, . . . , n} : The index set of the observed samples.

• α : The significance level.
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Experiment

• Baseline : AdaDetect

• Our method : E-AdaDetect

• Xinlier ∼ N (0, I100)

• Xoutlier ∼ N (µ, I100)
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Experiment

Figure 1: The two graphs above show how power and FDR change with
variations in µ. The two graphs below show how power and FDR change with
the number of train-calibration split repetitions.
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Conclusion

• While e-values are less powerful than p-values for single tests, they
allow FDR control in multiple testing and efficiently combine
non-independent tests.

• This study remove randomness in split-conformal inference and
AdaDetect.
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