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Introduction



Introduction

® in this work, we take a closer look at conformal prediction through
the lens of information theory

® proved conformal prediction can be used to bound H(Y|X) in three
different ways : DPI bound, Fano bound, model-based Fano bound

® showed the upper bounds serve as principled training objectives to
learn classifiers that are more amenable to SCP

® validate that both these applications of our theoretical results lead
to better predictive efficiency, i.e., narrower and, consequently, more
informative prediction sets



Background



Conformal Prediction

® Conformal Prediction (CP) is a framework that provides prediction
sets with finite-sample guarantees under minimal distribution-free
assumptions

® Given a set of n data points (X;, Y;) e X x Y, i=1,...,ndrawn
from some joint distribution Pxy, CP allows us to construct sets
C(X) € Y such that

P (Ytest eC (Xtest)) > 1 — «a where (Xtesh Ytest) ~ Pxy



Conformal Prediction

Split Conformal Predcition (SCP)

® can leverage any pre-trained model f : X — ) in the construction of
prediction sets

® aforesaid n data points constitute a calibration data set D, which must
be disjoint from the training data set used to fit the predictive model
® Procedure
1. define a nonconformity score function s¢ : X x )) — R which
captures the magnitude of the prediction error at a given data point
(the higher the score, the higher the disagreement between input x and prediction y)
2. evaluate the score function at every (Xj, Yi) € D to get a
collection of scores {S; = s¢ (Xi, i)}y
3. construct prediction set C (Xtest) as
C (Xeest) = {y € Y : 5 (Xeest, y) < Quantile (1 — c; {Si}/-1 U {o0})}
where Quantile (1 — a; {S;}{_;) is the level 1 — a quantile of the
empirical distribution defined by {S;}7_;



Conformal Prediction

Theoreml

If {X;, Yi}7_; arei.i.d. (or only exchangeable), then for a new i.i.d.
draw (Xtest, Yiest), and for any « € (0,1) and for any score function
such that {S;}"_; are almost surely distinct, then C (Xiest) as defined
above satisfies

1
n+1

1—a <P(Yiest €C (Xtest)) < 1— v, where o = v —

We would also like our prediction sets to be as narrow as possible, and
that is why CP methods are often compared in terms of their (empirical)
|C (x) | for

. . . . . . . 1
inefficiency, i.e., the average prediction set size B D xeDi

some test data set Diyes:.



Information Theory Applied to
Conformal Prediction



DPI for f-divergence
For any two probability measures Px and Qx defined on a space X,
and any map Wy x, which maps (Px, @x) to (Py, Qy), we have

Dr (Px||Qx) > Dr (Py||Qy)

where f is a convex function with f (1) = 0, and the f-divergence
between two probability measures P and @ is defined as

s (PIIQ) =Eo |7 (55 )|



DPI bound

DPI for CP

Consider any conformal prediction method with the prediction set C (x) with

the following finite sample guarantee:

1
1—-a<P(Y <1- —
a<P(YelC(x))< a+n+1

for any a € (0,0.5).

For any arbitrary conditional distribution Qy/x, the true conditional
distribution Py|x and the input measure Px, define the following two
measures Q := PxQy|x and P := PxPy|x. We have for any a € (0,0.5),

H(Y|X) <hs () + (1 —a+ ﬁ) logQ (Y € C(x))

+ alogQ (Y ¢ C(x))Epy, [logQy x]

with hp (@) = —alog (a) — (1 — @) log (1 — «).



DPI bound

Since the term Q (Y € C (X)) appears inside a log, an empirical estimate

Q (Y € C(X)) would result in a lower bound and would be biased.

DPI for CP

Based on the empirical Bernstein inequality, with probability 1 — d, we have

2V, (Z) log (2/9) " Tlog (2/9)

As (Z,n) = n 3(n—1)

Q(YeC(X)<Q(YeC(X))+As(Z,n):=Q(Y eC(X)),
QY ¢C(X) < QY ¢C (X)) +A5(Z,n) = Q(Y ¢C(X)),
with V;, (Z) the empirical variance of Z = (Z1,...,Z,),Zi = Q(yi € C(x)).
Using these bounds, we get the following inequality with probability 1 — :
H(Y|X) <hs (a) + (1 — @) logQ (Y € C (X)) +
anlogQ (Y ¢ C (X)) — Ep [logQyx]



MB Fano bound

Model-Based Fano Bound

Consider any conformal prediction method satisfying the upper and
lower bounds of Theorem1 for v € (0,0.5). Then, for the true
distribution P, and for any probability distribution @, we have

H(Y|X) <hs (@) + aBpy o vgern [—108Qy x.c(x). v ¢c(x)]

+ (1= an) EPy x. 0 vecr [—/OgQY|X,C(X),YeC(X)]

A good choice for Q is the predictive model itself, and that is why we
refer to the bound above as Model-Based Fano bound.



Simple Fano bound

Simple Fano Bound

Consider any conformal prediction method satisfying the upper and
lower bounds of Theorem1 for v € (0,0.5). Then, for the true
distribution P we have

H (Y|X) <hp (a) + QEPY,X,Dca”Yec(x) [ /Og(|y| = |C (X) |) ]
+ (11— o) ]EPV,X,Dca,lYeC(X) [ log|C (X)|]

The proof follows directly from MB Fano bound by replacing Q with the
uniform distribution.



Conformal Training




Conformal Training

® Although SCP is applicable to any pretrained ML model as a
post-processing step, the overall performance of any CP method
(commonly its inefficiency) is highly dependent on the underlying
model itself.

® Therefore, previous works have proposed to take CP into account
already during model training and directly optimize for low predictive
inefficiency.

® In particular, ConfTr splits each training batch B into calibration
Becar and test Bies: to simulate the SCP process for each gradient
update of model f and minimize the following size loss

log [|Cr (X) [] ~ log (1/|Bresr| > ler (X))

XEBiest
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Conformal Training

® Since SCP involves step functions, ConfTr introduced a couple of
relaxations to recover a differentiable objective
» the computation of quantiles is relaxed via differentiable sorting
operators
» the thresholding operation is replaced by smooth assignments of
labels to prediction sets via the logistic sigmoid

® DPI, MB Fano and simple Fano bounds can be made differentiable
in the same way and thus can serve as proper loss functions for
conformal training.
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Minimizing the UBs

® H(Y|X) captures the underlying uncertainty under the true labelling
distribution Py |x.

» Minimizing the bounds, we can hope to push the model f closer to
the true distribution, which is known to achieve minimal inefficiency.

> Interestingly, the cross-entropy loss also bounds H (Y|X) and thus
can be motivated as a conformal training objective from the same
angle.

» In that regard, the DPI bound is particularly advantageous as it is
provably tighter than the cross-entropy.
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Minimizing the UBs

® We can connect the simple Fano bound to the size loss E [|C (X) [].

® Applying Jensen’s inequality and the fact that

log (|1Y| — |C (X)) < log|Y| on the simple Fano bound, we obtain
further UB.

H(Y[|X) < Ao + (1= a,) logE[|C (X)|]

® Therefore, we ground ConfTr as minimizing an UB to the true
conditional entropy that is looser than our UBs for an appropriate
choice for Q.
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Experiments




® We test effectiveness of UBs as objectives for conformal training in
five data sets : MNIST, Fashion-MNIST, EMNIST, CIFAR10 and
CIFAR100.

® \We follow a similar optimization procedure and experimental setup
to that of ConfTr, but with the key differences that we learn the
classifiers from scratch in all cases (without the need of pretrained
CIFAR models).

® For each dataset, we use the default train and test splits but transfer
10% of the training data to the test dataset. We train the classifiers
only on the remaining 90% of the training data and, at test time,
run SCP with 10 different calibration/test splits by randomly
splitting the enlarged test dataset.
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Table 1: Inefficiency results for conformal training in the centralized setting. We report the mean

prediction set size (= standard deviation) across 10 different calib./test splits for ev = 0.01, showing
in bold all values within one std. of the best result. Results for THR and APS correspond to different
models trained with different hyperparameters (see Appendix G). Lower is better.

Method MNIST F-MNIST EMNIST CIFAR 10 CIFAR 100
THR APS THR APS THR APS THR APS THR APS

CE 2295018 2.505008 2395043 2414007 2064011 3401008 1695011 234022 19700005 2602101

ConfTr 628,07 210,007 1735000 1.89.000 199,010 2365011 990100 998,00 4058,

ConfTress 2.09:0.11 2.13:013 5.11p040 1.79:0.07 2011009 2.381011 2165000 2.18:006

Fano 2.095012 212,008 1701005 1.87:0.05 2104011 14 05 2355010 4030449
MB Fano  2.24:0.12 2494010 1.80:008 2253014 201011 3.67i013 1.66:000 1.891008 14.61:084 : .
DPI 2245007 2645007 1731007 2084005 1.98.0.00 4075003 1645007 1.971008 17551033 174140.62

329141
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Appendix : Empirical Bernstein Inequality

Hoeffding’s Inequality

Let Z,Z;,...,Z, bei.id. random variables with values in [0, 1] and let
0 > 0. Then with probability at least 1 — § in (Z1,...,Z,) we have

]EZ—fZZ < /Iog1/6

Bennett’s Inequality

Under the conditions of Hoeffding's inequality, we have with probability
at least 1 — § that

(2) /og1/<5 log1/d
EZ — = Z; <
Z n 3n

where V(Z) =E (Z —EZ).



Appendix : Empirical Bernstein Inequality

Empirical Bernstein Inequality

Under the conditions of Hoeffding's inequality, we have with probability
with at least 1 — ¢ in the i.i.d. vector Z = (Z4, ..., Z,) that

2V, (Z) log2/5 = Tlog2/é
n 3(n—1)

]EZ—EZ,-g
n

2
where V,,(Z) = ﬁ Yicicj<n (Zi = 4))



Appendix : Fano’s Inequality

Fano’s Inequality

Let Z, Y be discrete random variables on {1,..., M}. Then

H(Y|Z) — log2
>_\ 1=/ Fos
P(Z#Y)> g



Appendix : ConfTr

@ Conformal training: Calibration
inputs B Beal
g (1) 50% T=SMOOTHCAL({(mg(x;), yi)}iEBcal' a)
o (v2) diff. w.r.t. 0 through mg(z;)
Model
g ™ Y
Cg(xj; T)=SMOOTHPRED(7g (x4), T)
#&liff‘ w.r.t. 6 through ng(z;) and 7
50%
cla loss £ @Exnml.)le‘ Penalize vehicles in Cg:
——————————— === r-——T - - loss 2(=) ={cat, do, truck}
gradient pred. Bpred + size loss 2 (li; PR ‘”
Vg (£ + 2) bs. loss =7 7
o (£+ Prebs: Tprediction e R AT

Figure 1: Mlustration of conformal training (ConfTr): We develop differentiable prediction and
calibration steps for conformal prediction (CP), SMOOTHCAL and SMOOTHPRED. During training.
this allows ConfTr to “simulate” CP on each mini-batch B by calibrating on the first half B, and
predicting confidence sets on the other half Byrea (c.f. @). ConfTr can optimize arbitrary losses on
the predicted confidence sets. e.g.. reducing average confidence set size (inefficiency) using a size
loss £ or penalizing specific cl from being included using a classification loss £ (c.f. (). After
training using our method, any existing CP method can be used to obtain a coverage guarantee.
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Appendix : ConfTr

11 function PREDICT(ms (), 7) 1: function CONFORMALTRAINING =
: : (a, A=1)
2 compute Ey(z, k). kE[K] 2: for mini-batch B do
3: return Co(z;7) = {k: Eo(z, k) > 7} 3:  randomly split batch Bey & Byreg = B
- 4: {“On-the-fly” calibration on Bea:}

1: function CALIBRATE({ (g (i), vi }1—1, @) 5 7=SMOOTHCAL({(mo(2:), i) }ic Boys @)
2 compute Eo(z:,y:). i=1,...,n 6. {Prediction only on 7 € Bpeg:}
3: return QUANTILE({Es(h yo)} a1+ 1/n)) 7. Cy(w;7) = SMOOTHPRED(mg (), T)

8. {Optional classification loss: }
I: function SMOOTHPRED(7g (), 7, T=1) 9. Lp=0or EiEBPN L(Colzi;T), 3:)
2 return Co(a;7) = o (BT e (K] 100 Qp=3F .5 UCo(zsi7))
3: function SMOOTHCAL({(ma(2:), ys iy, @) 1 A=Vl |Bryl(Ln + AQ5)
4: return SMOOTHQUANT({ Es (i, %:) }, O'(1+%)) 12:  update parameters 6 using A

Algorithm 1: Smooth CP and Conformal Training (ConfTr): Top left: At test time, for THR,
PREDICT computes the conformity scores Ey(x, k) for each k€[K] and constructs the confidence
sets Cyg(a; 7) by thresholding with 7. CALIBRATE determines the threshold 7 as the a(1 + 1/n)-
quantile of the conformity scores w.r.t. the true classes y; on a calibration set {(z;,v:)} of size
n:=|Ica|. THR and APS use different conformity scores. Right and bottom left: ConfTr calibrates
on a part of each mini-batch, Bey. Thereby. we obtain guaranteed coverage on the other part. Bypq
(in expectation across batches). Then, the inefficiency on Bprg is minimized to update the model
parameters . Smooth implementations of calibration and prediction are used.
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Appendix : THR and APS

® THR (Threshold Conformal Predictor) constructs the cofidence sets
by thresholding probabilities Cy (x;7) := {k : mgx (x) > 7}. T is
computed as the a (1 + 1/|/c|)-quantile of the so-called conformity
scores Ey (xi, yi) = Ty, (xi)-

® APS (Adpative Prediction Sets) constructs confidence sets based on

the ordered probabilities. Specifically,
Co(x;7):={k: Ep(x,k) <7} with :

Ey (X, k) = T 0 (X) P oooqp g, y(k—1) (X) + Uﬂ-g,y(k) (X)

where 7y ) (x) > -+ > 7y ) (x) and U is a uniform random
variable in [0, 1] to break ties.

23



	Introduction
	Background
	Information Theory Applied to Conformal Prediction
	Conformal Training
	Experiments

