
An Information Theoretic Perspective on

Conformal Prediction

Kim Choeun

February 25, 2025

Seoul National University

1



Outline

1. Introduction

2. Background

3. Information Theory Applied to Conformal Prediction

4. Conformal Training

5. Experiments

2



Introduction



Introduction

• in this work, we take a closer look at conformal prediction through

the lens of information theory

• proved conformal prediction can be used to bound H(Y |X ) in three

different ways : DPI bound, Fano bound, model-based Fano bound

• showed the upper bounds serve as principled training objectives to

learn classifiers that are more amenable to SCP

• validate that both these applications of our theoretical results lead

to better predictive efficiency, i.e., narrower and, consequently, more

informative prediction sets
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Background



Conformal Prediction

• Conformal Prediction (CP) is a framework that provides prediction

sets with finite-sample guarantees under minimal distribution-free

assumptions

• Given a set of n data points (Xi ,Yi ) ∈ X × Y, i = 1, . . . , n drawn

from some joint distribution PXY , CP allows us to construct sets

C (X ) ∈ Y such that

P (Ytest ∈ C (Xtest)) ≥ 1− α where (Xtest ,Ytest) ∼ PXY
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Conformal Prediction

Split Conformal Predcition (SCP)

• can leverage any pre-trained model f : X → Y in the construction of

prediction sets

• aforesaid n data points constitute a calibration data set Dcal , which must

be disjoint from the training data set used to fit the predictive model f

• Procedure

1. define a nonconformity score function sf : X × Y → R which

captures the magnitude of the prediction error at a given data point

(the higher the score, the higher the disagreement between input x and prediction y)

2. evaluate the score function at every (Xi ,Yi ) ∈ Dcal to get a

collection of scores {Si = sf (Xi ,Yi )}ni=1

3. construct prediction set C (Xtest) as

C (Xtest) = {y ∈ Y : sf (Xtest , y) ≤ Quantile (1− α; {Si}ni=1 ∪ {∞})}
where Quantile (1− α; {Si}ni=1) is the level 1− α quantile of the

empirical distribution defined by {Si}ni=1
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Conformal Prediction

Theorem1

If {Xi ,Yi}ni=1 are i.i.d. (or only exchangeable), then for a new i.i.d.

draw (Xtest ,Ytest), and for any α ∈ (0, 1) and for any score function

such that {Si}ni=1 are almost surely distinct, then C (Xtest) as defined

above satisfies

1− α ≤ P (Ytest ∈ C (Xtest)) ≤ 1− αn, where αn = α− 1

n + 1

We would also like our prediction sets to be as narrow as possible, and

that is why CP methods are often compared in terms of their (empirical)

inefficiency, i.e., the average prediction set size 1
|Dtest |

∑
x∈Dtest

|C (x) | for
some test data set Dtest .
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Information Theory Applied to

Conformal Prediction



DPI

DPI for f-divergence

For any two probability measures PX and QX defined on a space X ,

and any map WY |X , which maps (PX ,QX ) to (PY ,QY ), we have

Df (PX ||QX ) ≥ Df (PY ||QY )

where f is a convex function with f (1) = 0, and the f-divergence

between two probability measures P and Q is defined as

Df (P||Q) := EQ

[
f

(
dP

dQ

)]
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DPI bound

DPI for CP

Consider any conformal prediction method with the prediction set C (x) with

the following finite sample guarantee:

1− α ≤ P (Y ∈ C (x)) ≤ 1− α+
1

n + 1

for any α ∈ (0, 0.5).

For any arbitrary conditional distribution QY |X , the true conditional

distribution PY |X and the input measure PX , define the following two

measures Q := PXQY |X and P := PXPY |X . We have for any α ∈ (0, 0.5),

H(Y |X ) ≤hb (α) +

(
1− α+

1

n + 1

)
logQ (Y ∈ C (x))

+ αlogQ (Y /∈ C (x))EPXY

[
logQY |X

]
with hb (α) = −αlog (α)− (1− α) log (1− α).
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DPI bound

Since the term Q (Y ∈ C (X )) appears inside a log, an empirical estimate

Q̂ (Y ∈ C (X )) would result in a lower bound and would be biased.

DPI for CP

Based on the empirical Bernstein inequality, with probability 1− δ, we have

∆δ (Z, n) :=

√
2Vn (Z) log (2/δ)

n
+

7log (2/δ)

3 (n − 1)

Q (Y ∈ C (X )) ≤ Q̂ (Y ∈ C (X )) + ∆δ (Z, n) := Q̃ (Y ∈ C (X )) ,

Q (Y /∈ C (X )) ≤ Q̂ (Y /∈ C (X )) + ∆δ (Z, n) := Q̃ (Y /∈ C (X )) ,

with Vn (Z) the empirical variance of Z = (Z1, . . . ,Zn) ,Zi = Q (yi ∈ C (xi )).

Using these bounds, we get the following inequality with probability 1− δ:

H (Y |X ) ≤hb (α) + (1− α) logQ̃ (Y ∈ C (X ))+

αnlogQ̃ (Y /∈ C (X ))− EP

[
logQY |X

]
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MB Fano bound

Model-Based Fano Bound

Consider any conformal prediction method satisfying the upper and

lower bounds of Theorem1 for α ∈ (0, 0.5). Then, for the true

distribution P, and for any probability distribution Q, we have

H (Y |X ) ≤hb (α) + αEPY ,X,Dcal |Y /∈C(X )

[
−logQY |X ,C(X ),Y /∈C(X )

]
+ (1− αn)EPY ,X,Dcal |Y∈C(X )

[
−logQY |X ,C(X ),Y∈C(X )

]
A good choice for Q is the predictive model itself, and that is why we

refer to the bound above as Model-Based Fano bound.
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Simple Fano bound

Simple Fano Bound

Consider any conformal prediction method satisfying the upper and

lower bounds of Theorem1 for α ∈ (0, 0.5). Then, for the true

distribution P we have

H (Y |X ) ≤hb (α) + αEPY ,X,Dcal |Y /∈C(X )
[ log (|Y| − |C (X ) |) ]

+ (1− αn)EPY ,X,Dcal |Y∈C(X )
[ log |C (X ) | ]

The proof follows directly from MB Fano bound by replacing Q with the

uniform distribution.
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Conformal Training



Conformal Training

• Although SCP is applicable to any pretrained ML model as a

post-processing step, the overall performance of any CP method

(commonly its inefficiency) is highly dependent on the underlying

model itself.

• Therefore, previous works have proposed to take CP into account

already during model training and directly optimize for low predictive

inefficiency.

• In particular, ConfTr splits each training batch B into calibration

Bcal and test Btest to simulate the SCP process for each gradient

update of model f and minimize the following size loss

logE [|Cf (X ) |] ≈ log

(
1/|Btest |

∑
x∈Btest

|Cf (x) |

)
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Conformal Training

• Since SCP involves step functions, ConfTr introduced a couple of

relaxations to recover a differentiable objective

▶ the computation of quantiles is relaxed via differentiable sorting

operators
▶ the thresholding operation is replaced by smooth assignments of

labels to prediction sets via the logistic sigmoid

• DPI, MB Fano and simple Fano bounds can be made differentiable

in the same way and thus can serve as proper loss functions for

conformal training.
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Minimizing the UBs

• H (Y |X ) captures the underlying uncertainty under the true labelling

distribution PY |X .

▶ Minimizing the bounds, we can hope to push the model f closer to

the true distribution, which is known to achieve minimal inefficiency.
▶ Interestingly, the cross-entropy loss also bounds H (Y |X ) and thus

can be motivated as a conformal training objective from the same

angle.
▶ In that regard, the DPI bound is particularly advantageous as it is

provably tighter than the cross-entropy.
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Minimizing the UBs

• We can connect the simple Fano bound to the size loss E [|C (X ) |].
• Applying Jensen’s inequality and the fact that

log (|Y| − |C (X ) |) ≤ log |Y| on the simple Fano bound, we obtain

further UB.

H (Y |X ) ≤ λα + (1− αn) logE [|C (X ) |]

• Therefore, we ground ConfTr as minimizing an UB to the true

conditional entropy that is looser than our UBs for an appropriate

choice for Q.
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Experiments



Setup

• We test effectiveness of UBs as objectives for conformal training in

five data sets : MNIST, Fashion-MNIST, EMNIST, CIFAR10 and

CIFAR100.

• We follow a similar optimization procedure and experimental setup

to that of ConfTr, but with the key differences that we learn the

classifiers from scratch in all cases (without the need of pretrained

CIFAR models).

• For each dataset, we use the default train and test splits but transfer

10% of the training data to the test dataset. We train the classifiers

only on the remaining 90% of the training data and, at test time,

run SCP with 10 different calibration/test splits by randomly

splitting the enlarged test dataset.
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Result
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Appendix : Empirical Bernstein Inequality

Hoeffding’s Inequality

Let Z ,Z1, . . . ,Zn be i.i.d. random variables with values in [0, 1] and let

δ > 0. Then with probability at least 1− δ in (Z1, . . . ,Zn) we have

EZ − 1

n

n∑
i=1

Zi ≤
√

log1/δ

2n
.

Bennett’s Inequality

Under the conditions of Hoeffding’s inequality, we have with probability

at least 1− δ that

EZ − 1

n

n∑
i=1

Zi ≤
√

2V (Z ) log1/δ

n
+

log1/δ

3n

where V (Z ) = E (Z − EZ ).
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Appendix : Empirical Bernstein Inequality

Empirical Bernstein Inequality

Under the conditions of Hoeffding’s inequality, we have with probability

with at least 1− δ in the i.i.d. vector Z = (Z1, . . . ,Zn) that

EZ − 1

n
Zi ≤

√
2Vn (Z) log2/δ

n
+

7log2/δ

3 (n − 1)

where Vn (Z) =
1

n(n−1)

∑
1≤i<j≤n (Zi − Zj)

2
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Appendix : Fano’s Inequality

Fano’s Inequality

Let Z ,Y be discrete random variables on {1, . . . ,M}. Then

P (Z ̸= Y ) ≥ H (Y |Z )− log2

logM
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Appendix : ConfTr
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Appendix : ConfTr
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Appendix : THR and APS

• THR (Threshold Conformal Predictor) constructs the cofidence sets

by thresholding probabilities Cθ (x ; τ) := {k : πθ,k (x) ≥ τ}. τ is

computed as the α (1 + 1/|Ical |)-quantile of the so-called conformity

scores Eθ (xi , yi ) = πθ,yi (xi ).

• APS (Adpative Prediction Sets) constructs confidence sets based on

the ordered probabilities. Specifically,

Cθ (x ; τ) := {k : Eθ (x , k) ≤ τ} with :

Eθ (x , k) := πθ,y (1) (x) + · · ·+ πθ,y (k−1) (x) + Uπθ,y (k) (x)

where πθ,y (1) (x) ≥ · · · ≥ πθ,y (K) (x) and U is a uniform random

variable in [0, 1] to break ties.
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