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Introduction

• LMs generate text based on probabilistic distributions. While

effective, they can still produce incorrect or unreliable outputs.

• Quantifying uncertainty in LM responses remains a major challenge.

• Conformal Prediction is a model-agnostic method that ensures

predictions contain correct responses with high probability.

• However, direct application to LMs is difficult due to their vast,

unbounded output space.

• Unlike traditional models, LMs rely on approximate sampling rather

than exhaustive enumeration.
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Introduction

Our Approach: Conformal Prediction for LMs

• We propose a method that calibrates a stopping rule for sampling

LMs until confidence is met.

• A rejection mechanism filters out low-quality or redundant responses

while maintaining theoretical guarantees.

• This ensures reliable and efficient prediction sets without requiring

exhaustive search.
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Challenges in Applying CP to LMs

Three major challenges:

• Infinite Output Space → Impossible to enumerate all possible text

responses.

• Some outputs are redundant or incorrect.

• Need a rejection rule → Remove low-quality responses while

maintaining coverage guarantees.
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Conformal Language Modeling (CLM)

Solution: Sampling-Based Conformal Prediction

Conformal Language Modeling (CLM) Approach:

• Sampling: Sample responses from LLM.

• Acceptance/Rejection: Accept/reject based on confidence

diversity.

• Stopping Rule: Stop sampling once certainty threshold is met.
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Notation

• x : Input prompt.

• pθ(y | x) : Conditional output distribution defined by the language

model.

• Cλ : Prediction set.

• Q(x , yk) : Sample quality estimator.

• S(yk , yj) : Text similarity function.

• F : Set-based confidence function.

• λ : Threshold configuration.

• λ1 : Similarity threshold for filtering redundant samples.

• λ2 : Quality threshold for rejecting low-quality samples.

• λ3 : Confidence threshold for stopping criterion.

• kmax : Sampling budget.
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Algorithm 1 - Conformal Sampling with Rejection

• Initialize: Start with an empty prediction set.

• Sampling: Generate candidate responses iteratively.

• Filtering: Reject low-quality or redundant responses.

• Stopping: Stop when confidence is sufficient.
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Algorithm 1 - Conformal Sampling with Rejection

Input:

• x : Prompt

• S : Similarity function

• Q : Quality estimator

• λ : Threshold

• kmax : Max samples

Loop until stopping criterion is met:

1. Sample response yk from LLM.

2. Reject if Q(x , yk ) < λ2 (low quality).

3. Reject if max S(yk , yj ) > λ1.

4. Add yk to prediction set Cλ.

5. Stop if confidence score F(Cλ) ≥ λ3.

Output: Cλ (Prediction Set)
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Optimizing λ with Learn Then Test (LTT)

Goal: Find the optimal threshold configuration λ to ensure reliable

prediction sets while maintaining efficiency.

Key Challenges:

• Prediction sets must maintain a controlled risk level ϵ.

• Searching for valid λ values is computationally expensive.

Solution: The Learn Then Test (LTT) framework finds the best λ

values through statistical risk control.

10



Steps of LTT Calibration

1. Define Candidate λ Values (Λ) : A set of possible threshold

configurations is predefined.

2. Compute Empirical Risk Rn(λ) :

Rn(λ) =
1

n

n∑
i=1

Li (λ), where Li (λ) = 1 {̸ ∃y ∈ Cλ(Xi ) : Ai (y) = 1}

Li (λ) checks if no valid prediction exists in Cλ(Xi ).

3. Calculate p-values pλ

pBTλ = P(Binom(n, ϵ) ≤ nRn(λ))

This controls the statistical risk.
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Selecting the Optimal λ

4. Identify Valid λ Configurations (Λvalid)

• Select λ values that satisfy the risk control condition.
• If no valid λ exists, abstain from making predictions.

5. Optimize λ to Balance Set Size and Efficiency

λ̂ = arg min
λ∈Λvalid

1

n

n∑
i=1

(
ρ1|Cλ(Xi )|+ ρ2

[Sλ(Xi )− S∗
λ(Xi )]

+

Sλ(Xi )

)
where Sλ(Xi ) is the total number of samples taken, and S∗

λ(Xi ) is the

index of the first valid generation.

Theorem 4.2: Risk-Controlled Sampling

The selected λ̂ ensures that the final prediction set satisfies:

P(Y ∈ Cλ(X )) ≥ 1− ϵ
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Algorithm 2 - Conformal Component Selection

Motivation: Long responses contain both correct & incorrect

information. Need to identify reliable subcomponents.

Steps:

1. Split text into components (sentences, phrases).

2. Evaluate each component independently using function F c .

3. Select high-confidence components into C inner
γ .
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Experimental Setup - Tasks & Datasets

Task Dataset Model Evaluation Criteria

Radiology

Report Genera-

tion

MIMIC-CXR ViT (Image En-

coder)

+ GPT-2 (Text

Decoder)

Clinical Efficacy

(CheXbert)

+ ROUGE-L ≥ 0.4

News Summa-

rization

CNN/DailyMail Fine-tuned T5-XL ROUGE-L ≥ 0.35

Open-domain

QA

TriviaQA LLaMA-13B

(Few-shot, No Fine-

tuning)

Exact Match

(Reference vs. Answer)
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Experimental Setup - Scoring Functions

Conformal Prediction uses three key scoring functions:

• Quality Function (Q): Evaluates the quality of individual responses.

• Similarity Function (S): Ensures diversity by detecting duplicates.

• Set Scoring Function (F): Measures confidence in the final

prediction set.

15



Quality Function (Q)

Definition: Measures how good an individual response y is.

Defined as:

Q(x , y) = pθ(y | x)

but varies by task.

Task-Specific Evaluation Metrics

Task Quality Metric Threshold

Radiology Report Genera-

tion

ROUGE-L ≥ 0.4

News Summarization ROUGE-L ≥ 0.35

Open-Domain QA Exact Match = 1
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Similarity Function (S)

Definition: Prevents redundant responses in the prediction set.

• Uses ROUGE-L to compare new samples against existing ones.

• Ensures each new sample is distinct:

max S(yk , yj) ≤ λ1
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Set Scoring Function (F)

Determines when to stop sampling.

Scoring Function Definition

FIRST-K Number of samples taken: FFIRST-K(C)

FIRST-K+REJECT Same as FIRST-K, but filters duplicates.

MAX Best individual response:

FMAX(C) = max(Q(y))

SUM Total quality score:

FSUM(C) =
∑
y∈C

Q(y)
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Experimental Setup - Metrics

• Set Loss: Measures the probability that the prediction set fails to

contain a correct answer.
▶ Ensures the loss does not exceed the predefined risk threshold ϵ.
▶ Example: If ϵ = 0.05, the model guarantees 95% coverage of correct

answers.

• Excess Samples: Evaluates unnecessary sampling beyond the first

correct response.
▶ Over-sampling increases computational cost and inefficiency.
▶ Includes redundant responses or continued sampling after a correct

answer is found.

• Final Set Size: Assesses the size of the final prediction set.
▶ Large sets may contain diverse answers but reduce interpretability.
▶ Small sets are more precise but risk missing correct answers.
▶ The goal is to maintain an optimal balance between accuracy and

efficiency.

• Computes Area Under the Curve (AUC) over ϵ or α.
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Experimental Results

Figure 2: Conformal sampling results for Cλ as a function of ϵ. We report the loss,

relative excess samples, and overall size (normalized by kmax). We also report the AUC

over achieved/non-trivial ϵ. 20



Experimental Results

Conformal Sampling Validity

• Set Loss must not exceed the target risk level.

• All methods remain below the diagonal line, confirming theoretical

validity.

Sampling Efficiency

• TriviaQA: MAX and SUM reduce set size significantly.

• Long-text tasks: MAX is more efficient than SUM and FIRST-K.

• FIRST-K+REJECT reduces redundancy but lacks full efficiency.

Component-Based Selection (Appendix G)

• Long text responses may mix correct and incorrect info.

• Selecting the most reliable components improves response quality.
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Conclusion

This study proposes a method to enhance the reliability of Language

Models by constructing statistically guaranteed prediction sets.

Key Contributions:

• Bridges conformal prediction and LMs by calibrating output set

sampling.

• Extends multi-label conformal prediction to identify reliable

components in long texts.

• Achieves valid risk control across diverse tasks while ensuring

efficient and precise output sets.
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Thank You
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