Conformal Language Modeling

Haeyoung Lee February 26, 2025

Seoul National University

- 1. Introduction
- 2. Challenges in Applying CP to LMs
- 3. Conformal Language Modeling
- 4. Experiments
- 5. Conclusion

- LMs generate text based on probabilistic distributions. While effective, they can still produce incorrect or unreliable outputs.
- Quantifying uncertainty in LM responses remains a major challenge.
- Conformal Prediction is a model-agnostic method that ensures predictions contain correct responses with high probability.
- However, direct application to LMs is difficult due to their vast, unbounded output space.
- Unlike traditional models, LMs rely on approximate sampling rather than exhaustive enumeration.

Our Approach: Conformal Prediction for LMs

- We propose a method that calibrates a stopping rule for sampling LMs until confidence is met.
- A rejection mechanism filters out low-quality or redundant responses while maintaining theoretical guarantees.
- This ensures reliable and efficient prediction sets without requiring exhaustive search.

Three major challenges:

- Infinite Output Space \rightarrow Impossible to enumerate all possible text responses.
- Some outputs are **redundant or incorrect**.
- Need a rejection rule → Remove low-quality responses while maintaining coverage guarantees.

Solution: Sampling-Based Conformal Prediction

Conformal Language Modeling (CLM) Approach:

- Sampling: Sample responses from LLM.
- Acceptance/Rejection: Accept/reject based on confidence diversity.
- Stopping Rule: Stop sampling once certainty threshold is met.

Notation

- x : Input prompt.
- *p*_θ(*y* | *x*) : Conditional output distribution defined by the language model.
- C_{λ} : Prediction set.
- $Q(x, y_k)$: Sample quality estimator.
- $S(y_k, y_j)$: Text similarity function.
- \mathcal{F} : Set-based confidence function.
- λ : Threshold configuration.
- λ_1 : Similarity threshold for filtering redundant samples.
- λ_2 : Quality threshold for rejecting low-quality samples.
- λ_3 : Confidence threshold for stopping criterion.
- k_{max} : Sampling budget.

Algorithm 1 - Conformal Sampling with Rejection

Algorithm 1 Conformal sampling with rejection

Definitions: x is an input prompt, \mathcal{F} is our set-based confidence function, \mathcal{S} is our text similarity function, \mathcal{Q} is our sample quality estimator, λ is our threshold configuration, and k_{\max} is our sampling budget. $p_{\theta}(y \mid x)$ is the conditional output distribution defined by our language model.

1: function SAMPLE(
$$x, \mathcal{F}, \mathcal{S}, \mathcal{Q}, \lambda, k_{max}$$
)
> Initialize an empty output set.

2: $\mathcal{C}_{\lambda} \leftarrow \{\}$
> Initialize an empty output set.

3: for $k = 1, 2, \dots, k_{max}$ do
> Sample a new response.

4: $y_k \leftarrow y \sim p_{\theta}(y \mid x)$.
> Sample a new response.

5: if $\mathcal{Q}(x, y_k) < \lambda_2$ then
> Reject if its estimated quality is too low.

6: continue
> Reject if it is too similar to other samples.

8: continue
> Add the new response to the output set.

9: $\mathcal{C}_{\lambda} = \mathcal{C}_{\lambda} \cup \{y_k\}$.
> Add the new response to the output set.

10: if $\mathcal{F}(\mathcal{C}_{\lambda}) \geq \lambda_3$ then
> Check if we are confident enough to stop.

11: break
Prese

- Initialize: Start with an empty prediction set.
- Sampling: Generate candidate responses iteratively.
- Filtering: Reject low-quality or redundant responses.
- **Stopping:** Stop when confidence is sufficient.

Input:

- x : Prompt
- S : Similarity function
- Q : Quality estimator
- λ : Threshold
- k_{max} : Max samples

Loop until stopping criterion is met:

- 1. Sample response y_k from LLM.
- 2. **Reject** if $Q(x, y_k) < \lambda_2$ (low quality).
- 3. **Reject** if max $S(y_k, y_j) > \lambda_1$.
- 4. Add y_k to prediction set C_{λ} .
- 5. **Stop** if confidence score $\mathcal{F}(C_{\lambda}) \geq \lambda_3$.

Output: C_{λ} (Prediction Set)

Algorithm 1 Conformal sampling with rejection

Definitions: z is an input prompt, F is our set-based confidence function, S is our text similarity function, Q is our sample quality estimator, λ is our flueshold configuration, and k_{\max} is our sampling budget, $p_0(q)$ x is the conditional output distribution defined by our language model.

1: ft	inction SAMPLE($x, F, S, Q, \lambda, k_{max}$)	
2:	$C_{\lambda} \leftarrow \{\}$	Initialize an empty output set.
3:	for $k = 1, 2,, k_{max}$ do	
4:	$y_k \leftarrow y \sim p_\theta(y \mid x).$	Sample a new response.
5:	if $Q(x, y_k) < \lambda_2$ then	Reject if its estimated quality is too low.
6:	continue	
7:	if $\max{S(y_k, y_i): y_i \in C_\lambda} > \lambda_1$ then	Reject if it is too similar to other samples.
8:	continue	
9:	$C_{\lambda} = C_{\lambda} \cup \{y_k\}.$	Add the new response to the output set.
10:	if $F(C_{\lambda}) \ge \lambda_3$ then	> Check if we are confident enough to stop.
11:	break	
12:	return C_{λ}	

Goal: Find the optimal threshold configuration λ to ensure reliable prediction sets while maintaining efficiency.

Key Challenges:

- Prediction sets must maintain a controlled risk level ϵ .
- Searching for valid λ values is computationally expensive.

Solution: The Learn Then Test (LTT) framework finds the best λ values through statistical risk control.

1. Define Candidate λ **Values (** Λ **)** : A set of possible threshold configurations is predefined.

2. Compute Empirical Risk $R_n(\lambda)$:

$$R_{\mathsf{n}}(\lambda) = \frac{1}{n} \sum_{i=1}^{n} L_i(\lambda), \quad \text{where} \quad L_i(\lambda) = \mathbf{1} \left\{ \not\exists y \in C_\lambda(X_i) : A_i(y) = 1 \right\}$$

 $L_i(\lambda)$ checks if no valid prediction exists in $C_{\lambda}(X_i)$.

3. Calculate p-values p_{λ}

$$p_{\lambda}^{BT} = P(\mathsf{Binom}(n, \epsilon) \le nR_{\mathsf{n}}(\lambda))$$

This controls the statistical risk.

Selecting the Optimal λ

- 4. Identify Valid λ Configurations (Λ_{valid})
 - Select λ values that satisfy the risk control condition.
 - If no valid λ exists, abstain from making predictions.
- 5. Optimize λ to Balance Set Size and Efficiency

$$\hat{\lambda} = \arg\min_{\lambda \in \Lambda_{\text{valid}}} \frac{1}{n} \sum_{i=1}^{n} \left(\rho_1 |C_{\lambda}(X_i)| + \rho_2 \frac{[S_{\lambda}(X_i) - S_{\lambda}^*(X_i)]^+}{S_{\lambda}(X_i)} \right)$$

where $S_{\lambda}(X_i)$ is the total number of samples taken, and $S^*_{\lambda}(X_i)$ is the index of the first valid generation.

Theorem 4.2: Risk-Controlled Sampling

The selected $\hat{\lambda}$ ensures that the final prediction set satisfies:

$$P(Y \in C_{\lambda}(X)) \geq 1 - \epsilon$$

Algorithm 2 - Conformal Component Selection

Algorithm 2 Conformal component selection

Definitions: C_{λ} is a prediction set, \mathcal{E} is an algorithm for splitting candidates y into components, \mathcal{F}^{c} is a confidence estimator for individual components, γ is our threshold configuration.

Motivation: Long responses contain both correct & incorrect information. Need to identify reliable subcomponents.

Steps:

- 1. Split text into components (sentences, phrases).
- 2. Evaluate each component independently using function \mathcal{F}^c .
- 3. Select high-confidence components into $C_{\gamma}^{\text{inner}}$.

Experiments

Task	Dataset	Model	Evaluation Criteria
Radiology Report Genera- tion	MIMIC-CXR	ViT (Image En- coder) + GPT-2 (Text Decoder)	Clinical Efficacy (CheXbert) + ROUGE-L ≥ 0.4
News Summa- rization	CNN/DailyMail	Fine-tuned T5-XL	$ROUGE-L \ge 0.35$
Open-domain QA	TriviaQA	LLaMA-13B (Few-shot, No Fine- tuning)	Exact Match (Reference vs. Answer)

Conformal Prediction uses three key scoring functions:

- Quality Function (Q): Evaluates the quality of individual responses.
- Similarity Function (S): Ensures diversity by detecting duplicates.
- Set Scoring Function (F): Measures confidence in the final prediction set.

Quality Function (Q)

Definition: Measures how good an individual response *y* is.

Defined as:

$$Q(x,y) = p_{\theta}(y \mid x)$$

but varies by task.

Task-Specific Evaluation Metrics

Task	Quality Metric	Threshold
Radiology Report Genera- tion	ROUGE-L	≥ 0.4
News Summarization	ROUGE-L	≥ 0.35
Open-Domain QA	Exact Match	=1

Definition: Prevents redundant responses in the prediction set.

- Uses ROUGE-L to compare new samples against existing ones.
- Ensures each new sample is distinct:

$$\max S(y_k, y_j) \leq \lambda_1$$

Determines when to stop sampling.

Scoring Function	Definition	
FIRST-K	Number of samples taken: $F_{\text{FIRST-K}}(C)$	
FIRST-K+REJECT	Same as FIRST-K, but filters duplicates.	
МАХ	Best individual response:	
	$F_{MAX}(C) = \max(Q(y))$	
SUM	Total quality score: $F_{\text{SUM}}(C) = \sum_{y \in C} Q(y)$	

Experimental Setup - Metrics

- Set Loss: Measures the probability that the prediction set fails to contain a correct answer.
 - Ensures the loss does not exceed the predefined risk threshold ϵ .
 - Example: If \(\epsilon = 0.05\), the model guarantees 95\% coverage of correct answers.
- Excess Samples: Evaluates unnecessary sampling beyond the first correct response.
 - Over-sampling increases computational cost and inefficiency.
 - Includes redundant responses or continued sampling after a correct answer is found.
- Final Set Size: Assesses the size of the final prediction set.
 - Large sets may contain diverse answers but reduce interpretability.
 - Small sets are more precise but risk missing correct answers.
 - The goal is to maintain an optimal balance between accuracy and efficiency.
- Computes Area Under the Curve (AUC) over ϵ or α .

Experimental Results

Figure 2: Conformal sampling results for C_{λ} as a function of ϵ . We report the loss, relative excess samples, and overall size (normalized by k_{\max}). We also report the AUC over achieved/non-trivial ϵ .

Experimental Results

Conformal Sampling Validity

- Set Loss must not exceed the target risk level.
- All methods remain below the diagonal line, confirming theoretical validity.

Sampling Efficiency

- TriviaQA: MAX and SUM reduce set size significantly.
- Long-text tasks: MAX is more efficient than SUM and FIRST-K.
- FIRST-K+REJECT reduces redundancy but lacks full efficiency.

Component-Based Selection (Appendix G)

- Long text responses may mix correct and incorrect info.
- Selecting the most reliable components improves response quality.

Conclusion

This study proposes a method to enhance the reliability of Language Models by constructing statistically guaranteed prediction sets.

Key Contributions:

- Bridges conformal prediction and LMs by calibrating output set sampling.
- Extends multi-label conformal prediction to identify reliable components in long texts.
- Achieves valid risk control across diverse tasks while ensuring efficient and precise output sets.

Thank You