Conformal Meta-learners for Predictive Inference of Individual Treatment Effects

SeongSik Choi February 26, 2025

Seoul National University

What is the goal?

Consider following example:

X : 나이, T ∈ {0,1} : 백신 접종 여부, Y : 감염 취약도

 $\rightarrow Y^{t}$: 백신 접종 여부 t일 때의 감염 취약도.

나이(X)에 따른 백신 접종(T)에 따른 감염 취약도(Y)의 감소 효과를 추정하자.

기존 causal inference 방법론을 통해서는, 특정 나이에서 백신 접종이 감염 취약도에 미치는 평균 인과 효과를 estimate할 수 있었다.

가령 X = 30 세인 사람이 백신을 접종할 경우 감염 취약도는 0.02만큼 $감소(<math>\mathbb{E}(Y^1 - Y^0 | X = 30) = -0.02$)할 것으로 기대될 수 있으나, uncertainty 정보는 알지 못함.

본 논문을 통해서는, 특정 나이에서 백신 접종이 감염 취약도에 미치는 개별 인과 효과에 대한 predictive interval을 구할 수 있다.

가령, X = 30세인 사람이 백신을 접종할 경우, 감염 취약도는 유의수준 α 에서 0.01 ~ 0.03 정도가 감소할 것으로 기대될 수 있음. ($\mathbb{P}(Y^1 - Y^0 \in (-0.03, -0.01)|X = 30) \ge 1 - \alpha$) (Warning : Technically untrue.)

What is the goal of individual treatment effects?

Individual treatment effect(ITE) : $Y_i^1 - Y_i^0$

Goal of existing methods : Estimate the conditional expectation of treatment effect τ such that

$$\tau(x) = \mathbb{E}[Y^1 - Y^0 | X = x]$$

Goal of proposed method : Construct a predictive interval of ITE \hat{C}_{α} such that

$$\mathbb{P}[Y_{n+1}^1 - Y_{n+1}^0 \in \widehat{C}_{\alpha}(X_{n+1})] \ge 1 - \alpha$$
(1)

for a predetermined target coverage of $1 - \alpha$, with $\alpha \in (0, 1)$, where the probability in (1) accounts for the randomness of the \hat{C}_{α} and the test point $(X_{n+1}, Y_{n+1}^1 - Y_{n+1}^0)$.

How to construct a conformal interval on oracle data?

Spoiler : we can construct an oracle predictive interval as following form:

$$\widehat{C}^*_{\alpha}(x) = \left[\widehat{\tau}(x) - Q^*_{\mathcal{V},1-\alpha}, \widehat{\tau}(x) + Q^*_{\mathcal{V},1-\alpha}\right]$$

우리가 상상속의 oracle data $\mathcal{D}^* = \{(X_i, Y_i^1 - Y_i^0)\}_{i=1}^n \stackrel{}{=} 얻었다고 가정하자.$ \mathcal{D}^* 을 training set \mathcal{D}_t^* 와 calibration set $\mathcal{D}_c^* \not\in$ 나누자. $\mathcal{D}_t^* \stackrel{}{=} 이용해서는 ML model <math>\hat{\tau}$ 을 학습하고, $\mathcal{D}_c^* \stackrel{}{=} 이용해서는 interval width Q_{\mathcal{V},1-\alpha}^* \stackrel{}{=} 결정할 것이다.$ 이를 위한 procedure는 다음 페이지와 같다.

Conformal prediction of ITE (Oracle)

How to construct a conformal interval on oracle data?

() conformity score $V(\cdot)$ is evaluated for all samples in \mathcal{D}_c^* as follows:

$$V_i^*(\hat{\tau}) = V(X_i, Y_i^1 - Y_i^0; \hat{\tau}), \forall i \in \mathcal{D}_c^*$$
(2)

A common choice of $V(\cdot)$ is absolute residual $V(x, y; \tau) = |y - \tau(x)|$.

We then compute a quantile of the empirical distribution of conformity scores

$$Q_{\mathcal{V},1-\alpha}^* := (1-\alpha) \left(1 + 1/\left| \mathcal{D}_c^* \right| \right) \text{-th quantile of } \mathcal{V}^*(\hat{\tau}) \tag{3}$$

where $\mathcal{V}^*(\hat{\tau}) = \{V_i^*(\hat{\tau}) : i \in \mathcal{D}_c^*\}.$

③ We can construct the oracle predictive interval at a new point $X_{n+1} = x$ as follows:

$$\widehat{C}^*_{\alpha}(x) = \left[\widehat{\tau}(x) - Q^*_{\mathcal{V}, 1-\alpha}, \widehat{\tau}(x) + Q^*_{\mathcal{V}, 1-\alpha}\right]$$
(4)

Remarks

• Since the oracle problem is a standard regression, the oracle procedure is marginally valid - i.e., it satisfies the guarantee in (1),

$$\mathbb{P}[Y_{n+1}^1 - Y_{n+1}^0 \in \hat{C}_{\alpha}^*(X_{n+1})] \ge 1 - \alpha$$

 However, oracle CP is infeasible since we cannot observe Y_i¹ - Y_i⁰, hence we need an alternative procedure that operates on the observed data *D* = {*Z_i* = (*X_i*, *T_i*, *Y_i*)}ⁿ_{i=1}.

How to construct a conformal interval on real data?

IDEA : We can calculate pseudo-outcomes \tilde{Y}_{φ} and use it instead of $Y_i^1 - Y_i^0$ to construct a conformal interval.

For nuisance parameter $\varphi = (\pi, \mu_0, \mu_1)$ and observable data Z = (X, T, Y), we can construct a proper pseudo-outcome $\tilde{Y}_{\varphi} = f(Z; \varphi)$ by choosing proper f such that

$$\mathbb{E}[\tilde{Y}_{\boldsymbol{\varphi}}|X=x] = \mathbb{E}[Y^1 - Y^0|X=x] = \tau(x)$$
(5)

where $\pi(x) = \mathbb{P}(T = 1 | X = x), \mu_t(x) = \mathbb{E}(Y^t | X = x), \forall t \in \{0, 1\}$

Options for f will be presented in the next page.

Using $\tilde{Y}_{\hat{\varphi},i} = f(Z_i, \hat{\varphi})$ instead of $Y_i^1 - Y_i^0$, we can construct $\hat{C}_{\hat{\varphi},\alpha}$ in a way similar to the oracle procedure of constructing \hat{C}_{α}^* .

How to construct a conformal interval on real data?(in detail)

Example of pseudo-outcome :

By choosing f in the table below, the condition in (5) can be satisfied. IPW-learner [27] : $\widetilde{Y}_{\varphi} = f(Z; \varphi) = \frac{T - \pi(X)}{\pi(X)(1 - \pi(X))}Y$ X-learner [5] : $\widetilde{Y}_{\varphi} = f(Z; \varphi) = T(Y - \mu_0(X)) + (1 - T)(\mu_1(X) - Y)$ DR-learner [20] : $\widetilde{Y}_{\varphi} = f(Z; \varphi) = \frac{T - \pi(X)}{\pi(X)(1 - \pi(X))}(Y - \mu_T(X)) + \mu_1(X) - \mu_0(X)$ Consider $\widehat{\varphi} = (\pi, \widehat{\mu}_0, \widehat{\mu}_1)$ which is an estimate of φ and use $\widetilde{Y}_{\widehat{\varphi}, i}$ instead of $Y_i^1 - Y_i^0$. (They assume π is known).

How to construct a conformal interval on real data?(in detail)

Given a dataset $\mathcal{D} = \{Z_i = (X_i, T_i, Y_i)\}_i$, we create three mutually-exclusive subsets: $\mathcal{D}_{\varphi}, \mathcal{D}_t$ and \mathcal{D}_c .

- \mathcal{D}_{φ} : used to estimate the nuisance parameters φ .(obtain $\hat{\varphi}$)
- \mathcal{D}_t : used to train a CATE model τ . (obtain $\hat{\tau}$)
- \mathcal{D}_c : used to compute conformity scores for $\hat{\tau}$. (obtain $V_{\varphi,i} \Rightarrow \hat{C}_{\varphi}(x)$)

How to construct a conformal interval on real data?(in detail)

Next, the estimates $\hat{\varphi} = (\pi, \hat{\mu}_0, \hat{\mu}_1)$ are used to transform $\{Z_i = (X_i, T_i, Y_i) : i \in \mathcal{D}_t\}$ into covariate/pseudo-outcome pairs $\{(X_i, \widetilde{Y}_{\varphi,i}) : i \in \mathcal{D}_t\}$ which are used to train a CATE model $\hat{\tau}$.

Finally, we compute conformity scores for $\hat{\tau}$ on pseudo-outcomes, i.e.,

$$V_{arphi,i}(\widehat{ au}) := V\left(X_i, \widetilde{Y}_{arphi,i}; \widehat{ au}
ight), orall i \in \mathcal{D}_c,$$
 $Q_{\mathcal{V}_{arphi,1-lpha}} := (1-lpha)\left(1+1/\left|\mathcal{D}_c\right|
ight)$ -th quantile of $\mathcal{V}(\widehat{ au})$

For a target coverage of $1 - \alpha$, we construct a predictive interval at a new point $X_{n+1} = x$ as follows:

$$\widehat{C}_{\varphi}(x) = \left[\widehat{\tau}(x) - Q_{\mathcal{V}_{\varphi}, 1-\alpha}, \widehat{\tau}(x) + Q_{\mathcal{V}_{\varphi}, 1-\alpha}\right]$$

where $\mathcal{V}_{\varphi} = \{V_{\varphi,k}(\hat{\tau}) : k \in \mathcal{D}_c\}$. We call $\hat{C}_{\varphi}(x)$ a pseudo-interval.

Does psuedo-interval satisfy (1)?

In the following Theorem, we provide sufficient conditions for the validity of conformal meta-learners in terms of the stochastic orders of their conformity scores.

Theorem 1. If $(X_i, T_i, Y_i(0), Y_i(1))$, i = 1, ..., n + 1 are exchangeable, then $\exists \alpha^* \in (0, 1)$ such that the pseudo-interval $\hat{C}_{\varphi}(X_{n+1})$ constructed using the dataset $\mathcal{D} = \{(X_i, T_i, Y_i)\}_{i=1}^n$ satisfies

$$\mathbb{P}\left(Y_{n+1}(1)-Y_{n+1}(0)\in\widehat{C}_{\varphi}\left(X_{n+1}\right)\right) \ge 1-\alpha, \forall \alpha \in \left(0,\alpha^{*}\right)$$

if at least one of the following stochastic ordering conditions hold:

Does psuedo-interval satisfy (1)?

Stochastic ordering conditions

Let $F_{V_{\varphi}}$ and F_{V^*} be the corresponding cumulative distribution functions (CDFs) of variable V_{φ} and V^* respectively.

- V_{φ} has first-order stochastic dominance (FOSD) on V^* ($V_{\varphi} \geq V^*$) $\Leftrightarrow F_{V_{\varphi}}(x) \leq F_{V^*}(x), \forall x$, with strict inequality for some x.
- V_{φ} has second-order stochastic dominance (SOSD) over V^* ($V_{\varphi} \leq V^*$) $\Leftrightarrow \int_{-\infty}^{x} [F_{V_{\varphi}}(t) - F_{V^*}(t)] dt \ge 0, \forall x$, with strict inequality for some x.
- V_{φ} has monotone convex dominance (MCX) over V^* ($V_{\varphi} \geq V^*$) $\Leftrightarrow \mathbb{E}_{X \sim F_{V_{\varphi}}}[u(X)] \ge \mathbb{E}_{X \sim F_{V^*}}[u(X)]$ for all non-decreasing convex functions $u : \mathbb{R} \to \mathbb{R}$.

(Under condition i, we have $\alpha^* = 1$)

Do V_{φ} and V^* satisfy the stochastic ordering conditions?

Theorem 2. Let $V_{\varphi}(\hat{\tau}) = \left| \hat{\tau}(X) - \tilde{Y}_{\varphi} \right|$ and assume that the propensity score function $\pi : \mathcal{X} \to [0, 1]$ is known.

Then, the following holds:

- For the X-learner, V_{\u03c6} and V* do not admit to a model- and distribution-free stochastic order.
- The IPW- and the DR-learners satisfy $V_{\varphi} \geq V^*$. (for any distribution P(X, T, Y(0), Y(1)), CATE estimate $\hat{\tau}$, and nuisance estimate $\hat{\varphi}$!)