Testing for outliers with conformal p-values Bates, Stephen, et al. The Annals of Statistics (2023)

Chanmoo Park

Seoul National University

February 25, 2025

Chanmoo Park (Seoul National University)

Conformal Outlier Detection

1/11

Outline

3 Calibration conditional p-values

2/11

Introduction

Goal: Outlier Detection with the "Type-I error Guarantee"

- In-distribution data : $\mathcal{D} = \{X_1, \dots, X_{2n}\} \stackrel{\text{i.i.d.}}{\sim} P_X.$
- "Split" Conformal Prediction
 - $\mathcal{D}_{\text{train}} = \{X_1, \dots, X_n\}$
 - $\mathcal{D}_{\mathsf{cal}} = \{X_{n+1}, \dots, X_{2n}\}$
- Test points: X_{new} or $\mathcal{D}_{test} = \{X_{2n+1}, \dots, X_{2n+m}\}$ (Unknown distribution)
- Generally, in Split Confromal literature, \mathcal{D}_{train} is considered as fixed (after training the baseline model, and we freeze the model).
- So we focus on the randomness on \mathcal{D}_{cal} , X_{new} and \mathcal{D}_{test} .

3/11

Marginally Conformal p-values (Naive version)

- Score function $\hat{s} : \mathbb{R}^d \to \mathbb{R}$ as a raw output of One-class classifier. Ex) One-Class SVM : a continuous output that small value imply outlier.
- For calibration set \mathcal{D}^{cal} , compute $\hat{s}(X_i)$ for $i = n + 1, \ldots, 2n$. Ex) Just evaluate OC-SVM on X_i s.
- For a new test point X_{new}, define "Marginally Conformal p-value"

$$\hat{u}^{(\text{marg})}(X_{\text{new}}) = \frac{1 + \left| \{ i : \hat{s}(X_i) \leq \hat{s}(X_{\text{new}}) \} \right|}{n+1}$$

- Intuition 1:
 - $\hat{u}^{(\mathrm{marg})}(X_{\mathrm{new}})$ is based on the rank of the new score among the calibration scores.
 - $\hat{u}^{(\text{marg})}(X_{\text{new}})$ is uniformly distributed on $\{\frac{1}{n+1}, \frac{2}{n+1}, \dots, 1\}$. (under null hypothesis $H_0: X_{\text{new}} \sim P_X$)

Marginally Conformal p-values (Naive version)

$$\hat{u}^{(\text{marg})}(X_{\text{new}}) = \frac{1 + \left|\{i : \hat{s}(X_i) \le \hat{s}(X_{\text{new}})\}\right|}{n+1}$$

• Marginal guarantee of $\hat{u}^{(\mathrm{marg})}$

$$\mathbb{P}_{\mathcal{D}_{\mathsf{cal}}, X_{\mathsf{new}}} \Big[\hat{u}^{(\mathrm{marg})}(X_{\mathsf{new}}) \le \alpha \Big] \le \alpha.$$

- Test statistics : $\hat{s}(X_{\sf new})$
- *p*-value under H_0 : $\hat{u}^{(\mathrm{marg})}(X_{\mathsf{new}})$
- Reject H_0 when p-value is under lpha
- (Marginal) Type I error : $\mathbb{P}_{\mathcal{D}_{\mathsf{cal}},X_{\mathsf{new}}}\left[\hat{u}^{(\mathrm{marg})}(X_{\mathsf{new}}) \leq \alpha\right]$
- \bullet Only guranteed "on average" over all possible $\mathcal{D}_{\mathsf{cal}}.$
- If you have a "unlucky" calibration set, it might not be guaranteed.

Marginally Conformal p-value (2-dimensional Toy example)

Chanmoo Park (Seoul National University)

Conformal Outlier Detection

Calibration conditional p-values

Goal: Outlier Detection with the "Conditional Type-I error Guarantee"

• Marginal p-value & rejection region

$$\hat{u}^{(\text{marg})}(X_{\text{new}}) = \frac{1 + \left|\{i : \hat{s}(X_i) \leq \hat{s}(X_{\text{new}})\}\right|}{n+1}.$$
$$\hat{u}^{(\text{marg})}(X_{\text{new}}) \leq \alpha$$

- \bullet Problem: Our rejection procedure is highly dependent on \mathcal{D}_{cal}
- Key Idea: Construct a universal envelope function $h(\cdot)$ for $\hat{u}^{(marg)}$.

Recall: $\hat{u}^{(\text{marg})}(X_{\text{new}})$ is uniformly distributed on $\{\frac{1}{n+1}, \frac{2}{n+1}, \dots, 1\}$. (under null hypothesis $H_0: X_{\text{new}} \sim P_X$)

Calibration conditional p-values

• Since $\hat{u}^{(\text{marg})}$ follows uniform distribution, there is a few known ways to make an envelop function $h(\cdot)$ for uniform distribution.

Figure: Envelope function for uniform CDF (Bates et al., 2023)

Calibration conditional p-values

• With $h(\cdot)$, define

$$\hat{u}^{(\mathrm{ccv})}(X_{\mathsf{new}}) \ = \ h\Big(\hat{u}^{(\mathrm{marg})}(X_{\mathsf{new}})\Big).$$

• Calibration Conditional Validity (guarantee)

$$\mathbb{P}_{\mathcal{D}_{\mathsf{cal}}}\left[\mathbb{P}_{X_{\mathsf{new}}}\left[\hat{u}^{(\mathrm{ccv})}\left(X_{\mathsf{new}}\right) \leq t \mid \mathcal{D}_{\mathsf{cal}}\right] \leq \alpha\right] \geq 1 - \delta$$

- $\hat{u}^{(\rm ccv)}$ is guaranteed at least for with at least $1-\delta$ probability over the choice of $\mathcal{D}_{\rm cal}.$
- That is, your unlucky choice of $\mathcal{D}_{\mathsf{cal}}$ is controlled under the probability of $\delta.$
- For multiple testing $\mathcal{D}_{test},$ BH (Benjamin-Hochberg) procedure is directly applicable.

Calibration conditional p-values (example)

Figure: 2-dimensional toy example: Simes adjustment inflates the p-values.

Calibration conditional p-values (experiments)

Figure: Conditinal FDR Simulation (Bates et al., 2023)

- $n_{\text{train}} = n_{\text{cal}} = n_{\text{test}} = 1000$,
- Conditional FDR: For a given calibration set, assess FDR of 100 different test sets
- Solid line 90th quantile of the conditional FDR. (100 experiments)