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Traditional RNN model

sequence of inputs : (xi,...,xT), T is length of input sequence

e sequence of outputs : (y1,...,yT)
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Limitation & Alternative

e Since traditional RNN model assume that length of input sequence
and output sequence are equal, it is not clear how to apply an RNN
to problems whose input and the output sequences have different
length

e The strategy for general sequence learning is to map the input
sequence to a fixed-sized vector using one RNN, and then to map
the vector to the target sequence with another RNN
: Encoder - Decoder (seq2seq) architecture

e |t would be difficult to train the RNNs due to the resulting long
term dependencies. — LSTM
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sequence of inputs : x = (xi, ..., XT,)

e sequence of outputs :y = (y1,...,yT,)

L4 ht = f(Xt7 ht—l)v Cc = q(hl, ceey th)

- Sutskever et al. (2014): fis LSTM, q(hy, ..., h7,) = ht
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Limitation of seq2seq based LSTM

e A potential issue with this encoder—decoder approach is that a
neural network needs to be able to compress all the necessary
information of a source sentence into a fixed-length vector.

e This may make it difficult for the neural network to cope with long
sentences, especially those that are longer than the sentences in the
training corpus.

» JOINTLY LEARN TO ALIGNMENT AND TRANSLATION



Soft alignment (attention)

e Soft alignment(attention): the model dynamically assigns
importance to each word in the input sentence, deciding which
words to focus on for each prediction.

1. Obtain Attention score: e; = a(si_1, h;j) = v, tanh (W,s;_1 + U,h;)
- alignment model which scores how well the inputs around position
j and the output at position i match.
- hj: hidden state of encoder, s;: hidden state of decoder

2. Obtain Attention distribution: aj; = _oxeley)
Do~y exp(eix)

3. Obtain context vector(attention value): ¢ = ZJ-T:Xl ajjh;

4. Obtain s; from context vector: f(s;_1, Y1, ¢i)
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3. Obtain context vector(attention value): ¢; = ZJ.T:Xl aijih;
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Attention

4. Obtain s; from context vector: f(s;j_1,yi—1,¢)
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Bidirectional RNN

Figure 1: bidirectional RNN
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ENCODER: Bidirectional RNN for annotation sequences

e RNN: reads input sequence in order from x; to xt, (forward)
—

e BiRNN: forward RNN( f) + backward RNN(?)
- forward RNN:
— —
calculates a sequence of forward hidden states ((hy, ..., h1,).
- bakcward RNN: . .
calculates a sequence of backward hidden states ((hy, ..., h7,).

e Obtain annotation for each word x; by concatenating the forward
—

hidden state and backward hidden state. h; = [hJ-T, th T
- In this way the annotation h; contains the summaries of both the
preceding words and the following words.

11



Attention mechanism

lllustrated Attention
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RESULTS
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RESULTS
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proposed model is robust than basic RNN model
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