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The Roots of RNN



Delay Differential Equation

ds⃗ (t)

dt
= As⃗ (t) + Br⃗ (t − τ0) + Cx⃗ (t) + ϕ⃗

r⃗ (t − τ0) = G (s⃗ (t − τ0))

• A,B,C , ϕ⃗ are the parameters

• t : time in continuous domain

s⃗ (t) : state of the system at time t

x⃗ (t) : external input to the system

r⃗ (t) : readout signal. obtained from state signal via G(·) in NN

τ0 : time delay term. represents memory aspect of the system.

G (·) : warping non-linearity
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Deriving RNN Formulation

• Discretize time steps using Backward Euler Method

Denote the duration of the sampling time step as ∆T ,

t = n∆T

ds⃗ (t)

dt
≈ s⃗ (n∆T +∆T )− s⃗ (n∆T )

∆T
s⃗ (n∆T +∆T )− s⃗ (n∆T )

∆T
≈ As⃗ (n∆T +∆T ) + Br⃗ (n∆T +∆T − τ0)

+ Cx⃗ (n∆T +∆T ) + ϕ⃗

Set the delay, τ0 = ∆T

s⃗ (n∆T +∆T )− s⃗ (n∆T ) = ∆T (As⃗ ((n + 1)∆T ) + Br⃗ (n∆T )

+ Cx⃗ ((n + 1)∆T ) + ϕ⃗ )
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Deriving RNN Formulation

∆T can be dropped from the arguments, which leaves the time axis

dimensionless.

(I − (∆T )A) s⃗ [n + 1] = s⃗ [n] + ((∆T )B) r⃗ [n] + ((∆T )C) x⃗ [n + 1] + (∆T ) ϕ⃗

Define Ws = (I − (∆T )A)−1,

s⃗ [n+1] = Ws s⃗ [n] + ((∆T )WsB) r⃗ [n] + ((∆T )WsC) x⃗ [n+1]+
(
(∆T )Ws ϕ⃗

)

Shift the index, n, forward by 1 step,

s⃗ [n] = Ws s⃗ [n− 1]+ ((∆T )WsB) r⃗ [n− 1]+ ((∆T )WsC) x⃗ [n] +
(
(∆T )Ws ϕ⃗

)
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Canonical RNN Formulation

Redefine the weight matrices and the bias vector as

Wr = (∆T )WsB

Wx = (∆T )WsC

θ⃗s = (∆T )Ws ϕ⃗

Then, we get the canonical RNN Formulation:

s⃗ [n] = Ws s⃗ [n − 1] +Wr r⃗ [n − 1] +Wx x⃗ [n] + θ⃗s

r⃗ [n] = G (s⃗ [n])
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Standard RNN Formulation

From canonical RNN form,

s⃗ [n] = Ws s⃗ [n − 1] +Wr r⃗ [n − 1] +Wx x⃗ [n] + θ⃗s

r⃗ [n] = G (s⃗ [n])

let A be a diagonal matrix with large negative entries (aii ≪ 0) for the stability

and ∆T = 1.

Then, Ws = (I − A)−1 ≈ diag
(

1
|aii |

)
.

Since 1
|aii |

≈ 0, the effect of s⃗ [n − 1] on the system’s trajectory will be

negligible.
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Standard RNN Formulation

Then, we get the standard RNN Formulation:

s⃗ [n] = Wr r⃗ [n − 1] +Wx x⃗ [n] + θ⃗s

r⃗ [n] = G (s⃗ [n])

Again, for the stability of equations, the eigenvalues of Ŵ = Ws +Wr should

lie within the complex-valued unit circle.

Consider the best case scenario, where B is a diagonal matrix. (B = ΛB)

Ws ≈ 0

Ŵ ≈ Wr ≈ −A−1B

W̃ = −A−1ΛB = diag (µi ) with µi =
λi

|aii |

A necessary and sufficient condition for stability is that 0 < µi < 1.

If any µi fails to satisfy this condition, the system will be unstable, causing the

elements of r⃗ [n] to enter the flat regions of the warping nonlinearity at some

value of index, n.
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RNN Unrolling



RNN Unrolling

• v⃗ [n] : the sequence of the ’ground truth’ output values

N : the length of the sequence, v⃗ [n]

• Assume that v⃗ [n]⌋0≤n≤N−1 is subdivided into M non-overlapping
varying-length segments with Km (≤ N) samples per segement.

v⃗ [n]⌋0≤n≤N−1 =

M−1∑
m=0

v⃗m [n]

v⃗m [n] = w⃗m[n]⊙ v⃗ [n]⌋0≤n≤N−1

=

{
v⃗ [n], j(m) ≤ n ≤ j(m) + Km − 1

0⃗, otherwise

j(m) =

{∑m−1
i=0 Ki , 1 ≤ m ≤ M − 1

0, m = 0

Θ ≡
{
Wr ,Wx , θ⃗s

}
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RNN Unrolling

Proposition 1.

Given the standard RNN system parametrized by Θ, assume that there exists a value

of Θ, at which the objective function is close to an optimum as measured by some

acceptable bound. Further, assume that there exist non-zero finite constants, M and

Km, such that Km ≤ N, where 0 ≤ m ≤ M − 1, and that the ground truth output

sequence, v⃗ [n]⌋0≤n≤N−1, can be partitioned into mutually independent

segment-level ground truth output subsequences. Then a single, reusable RNN cell,

unrolled for an adjustable number of steps, Km, is computationally sufficient for

seeking Θ that optimizes the objective function over the training set and for

inferring outputs from unseen inputs.

The mutual independence assumption between segments leads to

initializing the state signal of each segment to a random vector or to zero.
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RNN Unrolling

• Truncated unrolled RNN system

⃗̃s [n = −1] = 0⃗

⃗̃s [n] =

Wr
⃗̃r [n − 1] +Wx

⃗̃xm[n] + θ⃗s , 0 ≤ n ≤ Km − 1

0⃗, otherwise

⃗̃r [n] =

G
(⃗
s̃ [n]

)
, 0 ≤ n ≤ Km − 1

0⃗, otherwise

⃗̃xm [n] =

x⃗ [n + j(m)], 0 ≤ n ≤ Km − 1

0⃗, otherwise

0 ≤ m ≤ M − 1

• According to Proposition 1, the RNN unrolling technique is justified by

partitioning a single output sequence into multiple independent

subsequences and placing restrictions on the initialization of the state

between subsequences. However, adhering to these conditions may be

problematic in terms of modeling sequences in practical applications.
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RNN Training Difficulties



BPTT

• Truncated unrolled RNN systems are commonly trained using ’Back

Propagation Through Time’ (BPTT).

• The objective function, E , depends on the readout signal, ⃗̃r [n] and takes

on the same form for all segments. (now omit tilde for convenience)

χ⃗ [n] ≡ ∇⃗r⃗ [n]E =
∂E

∂ r⃗ [n]

ψ⃗ [n] ≡ ∇⃗s⃗ [n]E =
∂E

∂s⃗ [n]

E =

Km−1∑
n=0

E (r⃗ [n])
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BPTT

From

s⃗ [n + 1] = Wr r⃗ [n] +Wx x⃗m[n + 1] + θ⃗s

r⃗ [n] = G (s⃗ [n])

r⃗ [n + 1] = G (s⃗ [n + 1]) ,

the total partial derivative of the objective function w.r.t r⃗ [n] and s⃗ [n] :

χ⃗[n] =
∂E (r⃗ [n])

∂ r⃗ [n]
+Wr ψ⃗ [n + 1]

ψ⃗ [n] = χ⃗ [n]⊙ dG (z⃗)

dz⃗
⌋z=s⃗ [n]

=

(
∂E (r⃗ [n])

∂ r⃗ [n]
+Wr ψ⃗ [n + 1]

)
⊙ dG (z⃗)

dz⃗
⌋z=s⃗ [n]
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Gradient Vanishing/Exploding

∂ψ⃗ [n]

∂ψ⃗ [l ]
=

l∏
k=n+1

Wr ⊙
dG (z⃗)

dz⃗
⌋z=s⃗ [k]

∥∂ψ⃗ [n]

∂ψ⃗ [l ]
∥ ∼

(
∥Wr∥ · ∥

dG (z⃗)

dz⃗
∥
)l−n

∼ ∥Wr∥l−n · ∥dG (z⃗)

dz⃗
∥l−n

• If all eigenvalues of Wr satisfy the requirement for stability, i.e.,

0 < µi < 1, then ∥Wr∥ < 1 ⇒ Gradient Vanishing

• If at least one eigenvalue of Wr violates the requirement for stability, the

term ∥Wr∥l−n will grow exponentially.
(a) r⃗ [n] eventually saturate at the rails (the flat regions) of the warping function ⇒

Gradient Vanishing

(b) s⃗ [n] is initially biased in the quasi-linear region of the warping function and x⃗m[n]

guides the system to stay in this mode for a large number of steps ⇒ Gradient

Exploding
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From RNN to Vanilla LSTM

Network



Canonical RNN Formulation

The LSTM network was invented with the goal of addressing the vanishiing

gradients problem.

The network cell can be rationalized from the canonical RNN cell.

s⃗ [n] = Ws s⃗ [n − 1] +Wr r⃗ [n − 1] +Wx x⃗ [n] + θ⃗s

r⃗ [n] = G (s⃗ [n])

Several modifications to the cell’s design

s⃗ [n] = F⃗s (s⃗ [n − 1]) + F⃗u (r⃗ [n − 1], x⃗ [n])

r⃗ [n] = Gd (s⃗ [n])

F⃗s (s⃗ [n − 1]) = Ws s⃗ [n − 1]

F⃗u (r⃗ [n − 1], x⃗ [n]) = Wr r⃗ [n − 1] +Wx x⃗ [n] + θ⃗s

Gd (·) is the hyperbolic tangent.
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Gate Signals

According to the previous equations, the state signal blends both sources of

information in equal proportions at every step. These proportions can be made

adjustable by multiplying the two quantities by the special ”gate” signals.

s⃗ [n] = g⃗cs [n]⊙ F⃗s (s⃗ [n − 1]) + g⃗cu[n]⊙ F⃗u (r⃗ [n − 1], x⃗ [n])

0⃗ ≤ g⃗cs [n], g⃗cu[n] ≤ 1⃗

• Further Modifications

(a) Since F⃗s (s⃗ [n − 1]) = Ws s⃗ [n − 1] and Ws is a diagonal matrix,

reparametrize g⃗cs [n] so that the first term be g⃗cs [n]⊙ s⃗ [n − 1].

(b) For the second term, s⃗ [n − 1] and s⃗ [n] are connected with Wr for

every step. This can lead to vanishing/exploding gradients problem.

⇒ Introduce another gate g⃗cr [n] and define v⃗ [n] = g⃗cr [n]⊙ r⃗ [n].

Use v⃗ [n − 1] instead of r⃗ [n − 1] in F⃗u. (⃗0 ≤ g⃗cr [n] ≤ 1⃗)
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Gate Signals

(c) The external input signal, x⃗ [n] is multiplied by a ’control gate’,

g⃗cx [n] for the system flexibility.

(d) To maintain the same dynamic range of first two terms in F⃗u, it is

tempered by the saturating warping nonlinearity, Gd(z), so as to

produce the update candidate signal, u⃗ [n].

s⃗ [n] = g⃗cs [n]⊙ s⃗ [n − 1] + g⃗cu[n]⊙ u⃗ [n]

v⃗ [n] = g⃗cr [n]⊙ Gd (s⃗ [n])

F⃗u (v⃗ [n − 1], x⃗ [n]) = Wr v⃗ [n − 1] + g⃗cx [n]⊙Wx x⃗ [n] + θ⃗s

u⃗ [n] = Gd

(
F⃗u (v⃗ [n − 1], x⃗ [n])

)

16



Gate Signals

Gc(z) ≡ σ(z) ≡ 1

1 + e−z

g⃗cs [n] = Gc

(
Wxcs x⃗ [n] +Wscs s⃗ [n − 1] +Wvcs v⃗ [n − 1] + θ⃗cs

)
g⃗cu[n] = Gc

(
Wxcu x⃗ [n] +Wscu s⃗ [n − 1] +Wvcu v⃗ [n − 1] + θ⃗cu

)
g⃗cr [n] = Gc

(
Wxcr x⃗ [n] +Wscr s⃗ [n] +Wvcr v⃗ [n − 1] + θ⃗cr

)
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Vanilla LSTM

18



The Vanilla LSTM Network

Mechanism in Detail



Notations

- n : index of a step in the segment (or subsequence); n = 0, . . . ,K − 1

- K : number of steps in the unrolled segment (or subsequence)

- Gc : monotonic, bipolarly-saturating warping function for control/throttling

purposes (acts as a ”gate”)

- Gd : monotonic, negative-symmetric, bipolarly-saturating warping function for

data bounding purposes

- dx : dimensionality of the input signal to the cell

- ds : dimensionality of the state signal of the cell

- x⃗ ∈ Rdx : the input signal to the cell

- s⃗ ∈ Rds : the state signal to the cell

- v⃗ ∈ Rds : an accumulation node of the cell

- u⃗ ∈ Rds : the update candidate signal for the state signal of the cell

- r⃗ ∈ Rds : the readout candidate signal of the cell

- g ∈ Rds : a gate output signal of the cell for control/throttling purposes

- E ∈ R : objective function to be minimized as part of the model training

procedure
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LSTM details

• Data Set Standardization

µ⃗ =
1

N

N−1∑
n=0

x⃗0[n]

V =
1

N − 1

N−1∑
n=0

(x⃗0[n]− µ⃗) (x⃗0[n]− µ⃗)T

x⃗ [n] =
[
diag

(√
Vii

)]−1

(x⃗0[n]− µ⃗)

• Warping (Activation) Functions

Gc(z) ≡ σ(z) ≡ 1

1 + e−z

Gd(z) ≡ tanh(z) =
ez − e−z

ez + e−z
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Vanilla LSTM system Derivatives

dGc (z)

dz
= Gc (z) (1− Gc (z))

dGd (z)

dz
= 1− (Gd (z))

2

χ⃗[n] ≡ ∇⃗v⃗ [n]E =
∂E

∂v⃗ [n]

ρ⃗[n] ≡ ∇⃗r⃗ [n]E =
∂E

∂ r⃗ [n]

γ⃗[n] ≡ ∇⃗g⃗ [n]E =
∂E

∂g⃗ [n]

α⃗[n] ≡ ∇⃗a⃗[n]E =
∂E

∂a⃗[n]

ψ⃗[n] ≡ ∇⃗s⃗[n]E =
∂E

∂s⃗[n]
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Vanilla LSTM system Derivatives

χ⃗[n] =

(
∂y⃗ [n]

∂v⃗ [n]

)T ( ∂E

∂y⃗ [n]

)
+ f⃗χ[n + 1]

ρ⃗[n] =

(
∂v⃗ [n]

∂ r⃗ [n]

)T ( ∂E

∂v⃗ [n]

)
=
(
∇v⃗ [n]E

)
⊙ g⃗cr [n] = χ⃗[n]⊙ g⃗cr [n]

γ⃗cr [n] =
∂E

∂v⃗ [n]

∂v⃗ [n]

∂g⃗cr [n]
=
(
∇v⃗ [n]E

)
⊙ r⃗ [n] = χ⃗[n]⊙ r⃗ [n]

α⃗cr [n] = γ⃗cr [n]⊙
∂g⃗cr [n]

∂a⃗cr [n]
= γ⃗cr [n]⊙

dGc (z)

dz
⌋z=a⃗cr [n] = χ⃗[n]⊙ r⃗ [n]⊙

dGc (z)

dz
⌋z=a⃗cr [n]

where f⃗χ[n + 1] = WT
vcu α⃗cu [n + 1] +WT

vcs α⃗cs [n + 1] +WT
vcr α⃗cr [n + 1] +WT

vdu
α⃗du [n + 1]
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Vanilla LSTM system Derivatives

ψ⃗[n] = ρ⃗[n]⊙
∂ r⃗ [n]

∂s⃗[n]
+
∂a⃗cr [n]

∂s⃗[n]
α⃗cr [n] + f⃗ψ[n + 1]

= ρ⃗[n]⊙
dGd (z)

dz
⌋z=s⃗[n] +Wscr α⃗cr [n] + f⃗ψ[n + 1]

= χ⃗[n]⊙ g⃗cr [n]⊙
dGd (z⃗)

dz⃗
⌋z=s⃗[n] +Wscr α⃗cr [n] + f⃗ψ[n + 1]

α⃗cs [n] = ψ⃗[n]⊙
∂s⃗[n]

∂g⃗cs [n]
⊙
∂g⃗cs [n]

∂a⃗cs [n]
= ψ⃗[n]⊙ s⃗[n − 1]⊙

dGc (z⃗)

dz⃗
⌋z=a⃗cs [n]

α⃗cu [n] = ψ⃗[n]⊙
∂s⃗[n]

∂g⃗cu [n]
⊙
∂g⃗cu [n]

∂a⃗cu [n]
= ψ⃗[n]⊙ u⃗[n]⊙

dGc (z⃗)

dz⃗
⌋z=a⃗cu [n]

α⃗du [n] = ψ⃗[n]⊙
∂s⃗[n]

∂u⃗[n]
⊙

dGd (z⃗)

dz⃗
⌋z=a⃗du [n]

= ψ⃗[n]⊙ g⃗cu [n]⊙
dGd (z⃗)

dz⃗
⌋z=a⃗du [n]

where f⃗ψ[n + 1] = WT
scu α⃗cu [n + 1] +WT

scs α⃗cs [n + 1] + g⃗cs [n + 1]⊙ ψ⃗[n + 1]
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Error Gradient Sequences in Vanilla LSTM System

ψ⃗[n] = χ⃗[n]⊙ g⃗cr [n]⊙
dGd (z⃗)

dz⃗
⌋z=s⃗[n] +Wscr χ⃗[n]⊙ r⃗ [n]⊙

dGc (z)

dz
⌋z=a⃗cr [n] + f⃗ψ[n + 1]

=

((
∂y⃗ [n]

∂v⃗ [n]

)T ( ∂E

∂y⃗ [n]

)
+ f⃗χ[n + 1]

)
⊙ g⃗cr [n]⊙

dGd (z⃗)

dz⃗
⌋z=s⃗[n]

+Wscr

((
∂y⃗ [n]

∂v⃗ [n]

)T ( ∂E

∂y⃗ [n]

)
+ f⃗χ[n + 1]

)
⊙ r⃗ [n]⊙

dGc (z)

dz
⌋z=a⃗cr [n] + f⃗ψ[n + 1]

∂ψ⃗[k − 1]

∂ψ⃗[k]
=

(
∂ψ⃗[k − 1]

∂ f⃗χ[k]

)(
∂ f⃗χ[k]

∂ψ⃗[k]

)
+

(
∂ψ⃗[k − 1]

∂ f⃗ψ[k]

)(
∂ f⃗ψ[k]

∂ψ⃗[k]

)

=

(
∂ψ⃗[k − 1]

∂ f⃗χ[k]

){(
∂ f⃗χ[k]

∂α⃗cu [k]

)(
∂α⃗cu [k

∂ψ⃗[k]

)
+

(
∂ f⃗χ[k]

∂α⃗cs [k]

)(
∂α⃗cs [k

∂ψ⃗[k]

)

+

(
∂ f⃗χ[k]

∂α⃗du [k]

)(
∂α⃗du [k

∂ψ⃗[k]

)}
+

(
∂ψ⃗[k − 1]

∂ f⃗ψ[k]

){(
∂ f⃗ψ[k]

∂α⃗cu [k]

)(
∂α⃗cu [k

∂ψ⃗[k]

)

+

(
∂ f⃗ψ[k]

∂α⃗cs [k]

)(
∂α⃗cs [k

∂ψ⃗[k]

)
+ diag [g⃗cs [k]]

}
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Error Gradient Sequences in Vanilla LSTM System

=

(
diag

[⃗
gcr [k − 1] ⊙

dGd (⃗z)

dz⃗
⌋z=⃗s[k−1]

]
+ Wscr diag

[⃗
r [k − 1] ⊙

dGc (⃗z)

dz⃗
⌋z=a⃗cr [k−1]

])

×
{
Wvcu diag

[
u⃗[k] ⊙

dGc (⃗z)

dz⃗
⌋z=a⃗cu [k]

]
+ Wvcs diag

[⃗
s[k − 1] ⊙

dGc (⃗z)

dz⃗
⌋z=a⃗cs [k]

]

+ Wvdu
diag

[⃗
gcu [k] ⊙

dGd (⃗z)

dz⃗
⌋z=a⃗du [k]

] }
+

(
Wscu diag

[
u⃗[k] ⊙

dGc (⃗z)

dz⃗
⌋z=a⃗cu [k]

]

+ Wscs diag

[⃗
s[k − 1] ⊙

dGc (⃗z)

dz⃗
⌋z=a⃗cs [k]

]
+ diag [⃗gcs [k]]

)

= diag

[
u⃗[k] ⊙

dGc (⃗z)

dz⃗
⌋z=a⃗cu [k]

]

×
{
Wvcu

(
diag

[⃗
gcr [k − 1] ⊙

dGd (⃗z)

dz⃗
⌋z=⃗s[k−1]

]
+ Wscr diag

[⃗
r [k − 1] ⊙

dGc (⃗z)

dz⃗
⌋z=a⃗cr [k−1]

])
+ Wscu

}

+ diag

[⃗
s[k − 1] ⊙

dGc (⃗z)

dz⃗
⌋z=a⃗cs [k]

]

×
{
Wvcs

(
diag

[⃗
gcr [k − 1] ⊙

dGd (⃗z)

dz⃗
⌋z=⃗s[k−1]

]
+ Wscr diag

[⃗
r [k − 1] ⊙

dGc (⃗z)

dz⃗
⌋z=a⃗cr [k−1]

])
+ Wscs

}

+ diag

[⃗
gcu [k] ⊙

dGd (⃗z)

dz⃗
⌋z=a⃗du [k]

]

×
{
Wvdu

(
diag

[⃗
gcr [k − 1] ⊙

dGd (⃗z)

dz⃗
⌋z=⃗s[k−1]

]
+ Wscr diag

[⃗
r [k − 1] ⊙

dGc (⃗z)

dz⃗
⌋z=a⃗cr [k−1]

])}

+ diag [⃗gcs [k]]

= Q
(
k − 1, k; Θ̃

)
+ diag [⃗gcs [k]]
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Vanishing Gradient in Vanilla LSTM System

∂ψ⃗[n]

∂ψ⃗[l ]
=

l∏
k=n+1

∂ψ⃗[k − 1]

∂ψ⃗[k]

• A sufficient condition for driving the residual ∥ ∂ψ⃗[n]

∂ψ⃗[l ]
∥ to zero is maintaining

∥ ∂ψ⃗[k−1]

∂ψ⃗[k]
∥ < 1 at each step with the index, k.

(a) Q
(
k − 1, k; Θ̃

)
= [0] and g⃗cs [k] = 0⃗ for all values of the step index, k. This is the

case of the network being perpetually ’at rest’, which is not interesting from the

practical standpoint.

(b) g⃗cs [k] ≈ 1⃗ and Q
(
k − 1, k; Θ̃

)
= −diag [g⃗cs [k]] for some value of the step index, k.

However, satisfying this condition would require a very careful orchestration of all

signals.

(c) The spectral radius of
[
Q
(
k − 1, k; Θ̃

)
+ diag [g⃗cs [k]]

]
is less than unity for all

values of the step index, k. This behavior would not be due to a degenerate mode of

the system, but as a consequence of the particular patterns, occurring in the training

data. In other words, some dependencies are naturally short-range.
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Constant Error Carousel

∥
∂ψ⃗[k − 1]

∂ψ⃗[k]
∥ ≤ ∥Q

(
k − 1, k; Θ̃

)
∥+ ∥diag [g⃗cs [k]] ∥

• The most emblematic regime of the LSTM network arises when

∥Q
(
k − 1, k; Θ̃

)
∥ < 1. The following alternatives create favorable

circumstances for this condition to hold :

(a) ∥Wscu∥ < 1
2 , ∥Wvcu∥ < 1

2 , ∥Wscs ∥ < 1
2 , ∥Wvcs ∥ < 1

2 , ∥Wvdu
∥ < 1

(b) the state signal saturates the readout data warping function, ∥Wscr ∥ < 1
2 ,

∥Wscu∥ < 1
2 , ∥Wscs ∥ < 1

2

(c) the state signal saturates the readout data warping function, the accumulation signal

for the control readout gate saturates its control warping function, ∥Wscu∥ < 1
2 ,

∥Wscs ∥ < 1
2

(d) the control readout gate is turned off, ∥Wscu∥ < 1
2 , ∥Wscs ∥ < 1

2

(e) the accumulation signals for the control update gate and the control state gate

saturate their respective control warping functions, the update candidate

accumulation signal saturates the update candidate data warping function

(f) the control update gate is turned off, the control state gate is turned off
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Constant Error Carousel

If ∥Q
(
k − 1, k; Θ̃

)
∥ < 1, then

∥∂ψ⃗[n]
∂ψ⃗[l ]

∥ ∼
l∏

k=n+1

∥diag [g⃗cs [k]] ∥ ≤ 1 .

As long as the elements of g⃗cs [n] are fractions, the error gradient will naturally

decay. However, if the model is trained to saturate g⃗cs [n] at 1⃗, then the error

gradient is recirculated through Constant Error Carousel.
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