Diffusion model

Hwichang Jeong !

! Department of Statistics, Seoul National University, South Korea

September 6, 2024



Table of Contents

Diffusion model



Generative model

» The purpose of generative model is to create synthetic data which is similar to the real
data.
1. VAE
2. DDPM
3. GAN



Diffusion model

> The Diffusion model transforms a complex data distribution into a noise distribution by
slowly injecting noise into data and transforms the noise distribution into a data
distribution by slowly removing the noise.

Figure: Process in diffusion model




Notation

» D : Dimension of data.
> X, :data € RP

> g(xo) : True density function of xq.



Forward process

» Diffusion model transforms data xo sampled from g(xg) to noise xr through the following
markov chain process :

q(xe|x;—1) = N (x5 /1 = Bixi—1, BiIp)
where r € {1,---, T}, N'(x; u, 5°Ip) is a normal distribution with mean vector g and
covariance matrix o~Ip.
» By, -, Br are small positive hyperparameters.

» Note that when fOT Bidt — oo as T — 00, g(Xr) converges to standard normal
distribution.



Reverse process

» To sample data from noise, we have to calculate the reverse process
q(xX—1)
q(xt)

» However the reverse process is intractable, so we approximate it using Neural Network
with parameter 6.

q(xi—1[xe) = q(xe[x;—1)

Po(Xi—1|x:) = N (X—1; o (X1, 1), 7 Ip)
po(xr) = p(xr) = N(x7;0,1p)



Objective function

> Diffusion model is trained by maximizing lower bound of negative log likelihood

X;— X,
E, [~ 1og pg (x0)] < By | —logp (xr) — ) log poluoi|x) | _

2% g %)
> For efficient training, we decomposed L to
Eq[Dxr (g (x1 | X0) lIp (x7))
Lr
+> Dk (g (1 | x0,%0) [Ipe (xi—1 | x1)) —logpg (x0 | x1)]
t>1 S o

where Dy, is KL-divergence.



Objective function

» Whena; :=1— S and &; := Hi:l oy, we have
q (x| %) = N (x5 vVauxo, (1 — a;)Ip)
P Also when conditioned on xg
q (X1 | X, %0) =N (qu;ﬂz (Xuxo),BzID)

VO — 1 —ay— ~ 1—a;_
Q; 151X0+\/07r( ay ])X, and B = Qp lﬂt

where [, (X1, Xo) 1= - — —
1—a 1—ay 1—ay




Objective function

» L7 : constant w.r.t 6
> Liz—1:Whenpg (x—1 | x:) =N (x,—1; po (x,1) ,02Ip) for1 <t < T,

1 .
L =E,g 202 |2 (x1,%0) — o (x0,)[1*| + C
t

where C is constant does not depend on 6.
> Ly: When pg (xo | x1) =N (x0; g (x1, 1), 021), just calculate.

We assume that 0,2 = B, or (3.



Objective function

> When x; = x; (Xo, €) = /arXo + /1 — &€ for € ~ N(0,1)

1
207

1
Vv

B

bt ‘CE"“[ i
- 1

(x, (%0, €) — e) ~ 1o (% (X0, €) 1)

2}
> If we parametrize, g (X;,1) as \/% (X, — %69 (x1, t))

2 2
ot~ €= B [ [le—eo (VAo + V=) ]

2020y (1 — &)

where €y is a function approximator to predict e form x;.

> Experimentally, using unweighted loss and expectation of ¢ shows better results

2
Ex.c. [He —eo (Vamo+ V1= ae, )| }

where t ~ Unif{1, - - , T}, g is a function approximator to predict ¢ form x;.



Sampling algorithm

" Algorithm 2 Sampling
I: xp ~ N(0.1)
2: fort=T,...,1do
3 z~N(0,I)ift > 1,elsez=0
4: X1 = \/%—t Xt — \}%EQ(Xt,t)) + 0:Z
5: end for
6: return xg

Figure: Sampling algorithm



DDPM as score-matching

» Note that for constants ¢, - - - , ¢,
2
€o (X1, 1)
Ly — C=Exx |:Ct Vx, log q(x: | x0) + & ‘ ]

»> DDPM estimates negative gradients of logarithm of conditional densities.
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Score based model

P> We can generally express continuous diffusion process as SDE
dx; = f (%, t)dt + g(t)dw

where f(-,7) : RY — R? is vector valued function called drift coefficient of x,; and
g : R — R is a scalar function called diffusion coefficient of x; and w is a Wiener process.

» It is known that reverse of diffusion process is also a diffusion process
dx; = [f (%, 1) — g(1)* Vi, log q(x:))dt + g(1)dw

where w is Wiener process when time flows backwards.



Score based model

» The aim of score based generative model is to estimate Vy, log g(x;).
6* = arg minE, {)\(I)Ex, [Hse(x,, 1) — Vy, log g(x/) Hg] }
0

where X : [0, 7] — R is a positive weight function.



Objective function

> Except constant, it is equivalent to
0" = arg mink, (OB Exx, [l50 (i, 1) = V5, log a(x: | x0)I13] }

> After estimate 6* as 0, we sample using discretize reverse-time SDE:
X—1 = X — £(x;, 1) + g(’)zsé (%1, 1) + g()er,

where ¢, ~ N(0,1Ip).



DDPM as continuous SDE

»> In DDPM, x; can be represented as

%= V1= Bx1+ VB
where €; ~ N(0,Ip) fori=1,--- ,t.
> Andx,_;is

Xi—1 =

ﬁ(xt + Bisgx (X1, 1)) + /Bres

when sg (X¢, 1) = 7%% and 6* is a true parameter.



DDPM as continuous SDE

> As t goes to oo, it converges to SDE

1
dx; = —EB,x,dt + \/Edw

where w is Wiener process.



Example

2
> VESDE: dx, = \/ %2 dw (NSCN)
> VP SDE:dx, = — 1 Bxdt + v/Bidw

> sub VP SDE: dx, = — 1 Bixedt + \/ Bi(1 — e =2 J0 Bty ayy
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Theoretical result

» Ornstein-Ulhenback (OU) process:

1
dx = —Eﬁ,xdt +/Bdw

> Let g be the true density of Xy which is in Besov space BY , and g be estimated density of
Xo which obtained through the process below:

. 1 (A 1 — oy 3 t))+
Ko =— (&% — ——€;(%s, oz
—1 Vo 1 g, oW t

where z ~ N (z;0,1p) then,
TV, = /557

where n is size of data and TV is total variance distance.
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