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Generative model

▶ The purpose of generative model is to create synthetic data which is similar to the real
data.

1. VAE
2. DDPM
3. GAN



Diffusion model

▶ The Diffusion model transforms a complex data distribution into a noise distribution by
slowly injecting noise into data and transforms the noise distribution into a data
distribution by slowly removing the noise.

Figure: Process in diffusion model



Notation

▶ D : Dimension of data.
▶ x0 : data ∈ RD

▶ q(x0) : True density function of x0.



Forward process

▶ Diffusion model transforms data x0 sampled from q(x0) to noise xT through the following
markov chain process :

q(xt|xt−1) = N (xt;
√

1 − βtxt−1, βtID)

where t ∈ {1, · · · , T}, N (x;µ, σ2ID) is a normal distribution with mean vector µ and
covariance matrix σ2ID.

▶ β1, · · · , βT are small positive hyperparameters.

▶ Note that when
∫ T

0 βtdt → ∞ as T → ∞, q(xT) converges to standard normal
distribution.



Reverse process

▶ To sample data from noise, we have to calculate the reverse process

q(xt−1|xt) = q(xt|xt−1)
q(xt−1)

q(xt)

▶ However the reverse process is intractable, so we approximate it using Neural Network
with parameter θ.

pθ(xt−1|xt) = N (xt−1;µθ(xt, t), σ2
t ID)

pθ(xT) = p(xT) = N (xT ; 0, ID)



Objective function

▶ Diffusion model is trained by maximizing lower bound of negative log likelihood

Eq [− log pθ (x0)] ≤ Eq

− log p (xT)−
∑
t≥1

log
pθ (xt−1 | xt)

q (xt | xt−1)

 =: L

▶ For efficient training, we decomposed L to

Eq[DKL (q (xT | x0) ∥p (xT))︸ ︷︷ ︸
LT

+
∑
t>1

DKL (q (xt−1 | xt, x0) ∥pθ (xt−1 | xt))︸ ︷︷ ︸
Lt−1

− log pθ (x0 | x1)︸ ︷︷ ︸
L0

]

where DKL is KL-divergence.



Objective function

▶ When αt := 1 − βt and ᾱt :=
∏t

s=1 αs, we have

q (xt | x0) = N
(
xt;

√
ᾱtx0, (1 − ᾱt) ID

)
▶ Also when conditioned on x0

q (xt−1 | xt, x0) = N
(

xt−1; µ̃t (xt, x0) , β̃tID

)
where µ̃t (xt, x0) :=

√
ᾱt−1βt

1 − ᾱt
x0 +

√
αt (1 − ᾱt−1)

1 − ᾱt
xt and β̃t :=

1 − ᾱt−1

1 − ᾱt
βt



Objective function

▶ LT : constant w.r.t θ
▶ L1:T−1 : When pθ (xt−1 | xt) = N

(
xt−1;µθ (xt, t) , σ2

t ID
)

for 1 < t ≤ T ,

Lt−1 = Eq

[
1

2σ2
t
∥µ̃t (xt, x0)− µθ (xt, t)∥2

]
+ C

where C is constant does not depend on θ.
▶ L0 : When pθ (x0 | x1) = N

(
x0;µθ (x1, 1) , σ2

1I
)
, just calculate.

▶ We assume that σ2
t = β̃t or βt .



Objective function

▶ When xt = xt (x0, ϵ) =
√
ᾱtx0 +

√
1 − ᾱtϵ for ϵ ∼ N (0, I)

Lt−1 − C = Ex0,ϵ

[
1

2σ2
t

∥∥∥∥ 1
√
αt

(
xt (x0, ϵ)−

βt√
1 − ᾱt

ϵ

)
− µθ (xt (x0, ϵ) , t)

∥∥∥∥2
]

▶ If we parametrize, µθ (xt, t) as 1√
αt

(
xt − βt√

1−ᾱt
ϵθ (xt, t)

)
Lt−1 − C = Ex0,ϵ

[
β2

t

2σ2
t αt (1 − ᾱt)

∥∥∥ϵ− ϵθ

(√
ᾱtx0 +

√
1 − ᾱtϵ, t

)∥∥∥2
]

where ϵθ is a function approximator to predict ϵ form xt .
▶ Experimentally, using unweighted loss and expectation of t shows better results

Ex0,ϵ,t

[∥∥∥ϵ− ϵθ

(√
ᾱtx0 +

√
1 − ᾱtϵ, t

)∥∥∥2
]

where t ∼ Unif{1, · · · , T}, ϵθ is a function approximator to predict ϵ form xt .



Sampling algorithm

Figure: Sampling algorithm



DDPM as score-matching

▶ Note that for constants c2, · · · , cT ,

Lt−1 − C = Ex0,xt

[
ct

∥∥∥∥∇xt log q(xt | x0) +
ϵθ (xt, t)
√

1 − ᾱt

∥∥∥∥2
]

▶ DDPM estimates negative gradients of logarithm of conditional densities.
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Score based model

▶ We can generally express continuous diffusion process as SDE

dxt = f (xt, t)dt + g(t)dw

where f (·, t) : Rd → Rd is vector valued function called drift coefficient of xt and
g : R → R is a scalar function called diffusion coefficient of xt and w is a Wiener process.

▶ It is known that reverse of diffusion process is also a diffusion process

dxt = [f (xt, t)− g(t)2∇xt log q(xt)]dt + g(t)dw̄

where w̄ is Wiener process when time flows backwards.



Score based model

▶ The aim of score based generative model is to estimate ∇xt log q(xt).

θ∗ = argmin
θ

Et

{
λ(t)Ext

[
∥sθ(xt, t)−∇xt log q(xt)∥2

2

]}
where λ : [0, T] → R+ is a positive weight function.



Objective function

▶ Except constant, it is equivalent to

θ∗ = argmin
θ

Et

{
λ(t)Ex0Ext|x0

[
∥sθ(xt, t)−∇xt log q(xt | x0)∥2

2

]}
▶ After estimate θ∗ as θ̂, we sample using discretize reverse-time SDE:

xt−1 = xt − f(xt, t) + g(t)2sθ̂ (xt, t) + g(t)ϵt,

where ϵt ∼ N(0, ID).



DDPM as continuous SDE

▶ In DDPM, xt can be represented as

xt =
√

1 − βtxt−1 +
√

βtϵt−1

where ϵi ∼ N(0, ID) for i = 1, · · · , t.
▶ And xt−1 is

xt−1 =
1

√
1 − βt

(xt + βtsθ∗ (xt, t)) +
√

βtϵt

when sθ(xt, t) = − ϵθ(xt,t)√
1−ᾱt

and θ∗ is a true parameter.



DDPM as continuous SDE

▶ As t goes to ∞, it converges to SDE

dxt = −
1
2
βtxtdt +

√
βtdw

where w is Wiener process.



Example

▶ VE SDE : dxt =

√
dβ2

t
dt dw (NSCN)

▶ VP SDE : dxt = − 1
2βtxtdt +

√
βtdw

▶ sub VP SDE : dxt = − 1
2βtxtdt +

√
βt(1 − e−2

∫ t
0 βsds)dw
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Theoretical result

▶ Ornstein-Ulhenback (OU) process:

dx = −
1
2
βtxdt +

√
βtdw

▶ Let q be the true density of x0 which is in Besov space Bs
a,b and q̂ be estimated density of

x̂0 which obtained through the process below:

x̂t−1 =
1

√
αt

(
x̂t −

1 − αt√
1 − ᾱt

ϵθ̂(x̂t, t)
)

+ σtz

where z ∼ N (z; 0, ID) then,

TV(q̂, q) ≍ n−s/(2s+D)

where n is size of data and TV is total variance distance.
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