Diffusion model

Hwichang Jeong¹

¹Department of Statistics, Seoul National University, South Korea

September 6, 2024

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Table of Contents

Diffusion model

DDPM as score based model

Theoretical result

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 臣 の�?

Generative model

The purpose of generative model is to create synthetic data which is similar to the real data.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

- 1. VAE
- 2. DDPM
- 3. GAN

Diffusion model

The Diffusion model transforms a complex data distribution into a noise distribution by slowly injecting noise into data and transforms the noise distribution into a data distribution by slowly removing the noise.

Figure: Process in diffusion model

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Notation

- ► *D* : Dimension of data.
- \blacktriangleright **x**₀ : data $\in \mathbb{R}^{D}$
- $q(\mathbf{x}_0)$: True density function of \mathbf{x}_0 .

Forward process

Diffusion model transforms data x₀ sampled from q(x₀) to noise x_T through the following markov chain process :

$$q(\mathbf{x}_t|\mathbf{x}_{t-1}) = \mathcal{N}(\mathbf{x}_t; \sqrt{1-\beta_t}\mathbf{x}_{t-1}, \beta_t \mathbf{I}_D)$$

where $t \in \{1, \dots, T\}$, $\mathcal{N}(\mathbf{x}; \boldsymbol{\mu}, \sigma^2 \mathbf{I}_D)$ is a normal distribution with mean vector $\boldsymbol{\mu}$ and covariance matrix $\sigma^2 \mathbf{I}_D$.

- β_1, \cdots, β_T are small positive hyperparameters.
- ▶ Note that when $\int_0^T \beta_t dt \to \infty$ as $T \to \infty$, $q(\mathbf{x}_T)$ converges to standard normal distribution.

Reverse process

To sample data from noise, we have to calculate the reverse process

$$q(\mathbf{x}_{t-1}|\mathbf{x}_t) = q(\mathbf{x}_t|\mathbf{x}_{t-1}) \frac{q(\mathbf{x}_{t-1})}{q(\mathbf{x}_t)}$$

• However the reverse process is intractable, so we approximate it using Neural Network with parameter θ .

$$p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_{t}) = \mathcal{N}(\mathbf{x}_{t-1}; \mu_{\theta}(\mathbf{x}_{t}, t), \sigma_{t}^{2} \mathbf{I}_{D})$$
$$p_{\theta}(\mathbf{x}_{T}) = p(\mathbf{x}_{T}) = \mathcal{N}(\mathbf{x}_{T}; \mathbf{0}, \mathbf{I}_{D})$$

Diffusion model is trained by maximizing lower bound of negative log likelihood

$$\mathbb{E}_{q}\left[-\log p_{\theta}\left(\mathbf{x}_{0}\right)\right] \leq \mathbb{E}_{q}\left[-\log p\left(\mathbf{x}_{T}\right) - \sum_{t \geq 1}\log \frac{p_{\theta}\left(\mathbf{x}_{t-1} \mid \mathbf{x}_{t}\right)}{q\left(\mathbf{x}_{t} \mid \mathbf{x}_{t-1}\right)}\right] =: L$$

► For efficient training, we decomposed *L* to

$$\mathbb{E}_{q}[\underbrace{D_{\mathrm{KL}}\left(q\left(\mathbf{x}_{T} \mid \mathbf{x}_{0}\right) \parallel p\left(\mathbf{x}_{T}\right)\right)}_{L_{T}} + \sum_{t>1}\underbrace{D_{\mathrm{KL}}\left(q\left(\mathbf{x}_{t-1} \mid \mathbf{x}_{t}, \mathbf{x}_{0}\right) \parallel p_{\theta}\left(\mathbf{x}_{t-1} \mid \mathbf{x}_{t}\right)\right)}_{L_{t-1}} \underbrace{-\log p_{\theta}\left(\mathbf{x}_{0} \mid \mathbf{x}_{1}\right)}_{L_{0}}]$$

where D_{KL} is KL-divergence.

• When $\alpha_t := 1 - \beta_t$ and $\bar{\alpha}_t := \prod_{s=1}^t \alpha_s$, we have

$$q\left(\mathbf{x}_{t} \mid \mathbf{x}_{0}\right) = \mathcal{N}\left(\mathbf{x}_{t}; \sqrt{\bar{\alpha}_{t}}\mathbf{x}_{0}, \left(1 - \bar{\alpha}_{t}\right)\mathbf{I}_{D}\right)$$

Also when conditioned on x₀

$$q\left(\mathbf{x}_{t-1} \mid \mathbf{x}_{t}, \mathbf{x}_{0}\right) = \mathcal{N}\left(\mathbf{x}_{t-1}; \tilde{\boldsymbol{\mu}}_{t}\left(\mathbf{x}_{t}, \mathbf{x}_{0}\right), \tilde{\beta}_{t}\mathbf{I}_{D}\right)$$

where $\tilde{\boldsymbol{\mu}}_{t}\left(\mathbf{x}_{t}, \mathbf{x}_{0}\right) := \frac{\sqrt{\bar{\alpha}_{t-1}}\beta_{t}}{1 - \bar{\alpha}_{t}}\mathbf{x}_{0} + \frac{\sqrt{\alpha_{t}}\left(1 - \bar{\alpha}_{t-1}\right)}{1 - \bar{\alpha}_{t}}\mathbf{x}_{t}$ and $\tilde{\beta}_{t} := \frac{1 - \bar{\alpha}_{t-1}}{1 - \bar{\alpha}_{t}}\beta_{t}$

\blacktriangleright L_T : constant w.r.t θ

$$\blacktriangleright L_{1:T-1}: \text{When } p_{\theta}\left(\mathbf{x}_{t-1} \mid \mathbf{x}_{t}\right) = \mathcal{N}\left(\mathbf{x}_{t-1}; \boldsymbol{\mu}_{\theta}\left(\mathbf{x}_{t}, t\right), \sigma_{t}^{2} \mathbf{I}_{D}\right) \text{ for } 1 < t \leq T,$$

$$L_{t-1} = \mathbb{E}_q \left[\frac{1}{2\sigma_t^2} \| \tilde{\boldsymbol{\mu}}_t \left(\mathbf{x}_t, \mathbf{x}_0 \right) - \boldsymbol{\mu}_{\theta} \left(\mathbf{x}_t, t \right) \|^2 \right] + C$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 - のへぐ

where C is constant does not depend on θ .

- $\blacktriangleright L_0: \text{When } p_{\theta}\left(\mathbf{x}_0 \mid \mathbf{x}_1\right) = \mathcal{N}\left(\mathbf{x}_0; \boldsymbol{\mu}_{\theta}\left(\mathbf{x}_1, 1\right), \sigma_1^2 I\right), \text{ just calculate.}$
- We assume that $\sigma_t^2 = \tilde{\beta}_t$ or β_t .

► When
$$x_t = \mathbf{x}_t (\mathbf{x}_0, \boldsymbol{\epsilon}) = \sqrt{\bar{\alpha}_t} \mathbf{x}_0 + \sqrt{1 - \bar{\alpha}_t} \boldsymbol{\epsilon}$$
 for $\boldsymbol{\epsilon} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$
 $L_{t-1} - C = \mathbb{E}_{\mathbf{x}_0, \boldsymbol{\epsilon}} \left[\frac{1}{2\sigma_t^2} \left\| \frac{1}{\sqrt{\alpha_t}} \left(\mathbf{x}_t (\mathbf{x}_0, \boldsymbol{\epsilon}) - \frac{\beta_t}{\sqrt{1 - \bar{\alpha}_t}} \boldsymbol{\epsilon} \right) - \boldsymbol{\mu}_{\theta} (\mathbf{x}_t (\mathbf{x}_0, \boldsymbol{\epsilon}), t) \right\|^2 \right]$
► If we parametrize, $\boldsymbol{\mu}_{\theta} (\mathbf{x}_t, t)$ as $\frac{1}{\sqrt{\alpha_t}} \left(\mathbf{x}_t - \frac{\beta_t}{\sqrt{1 - \bar{\alpha}_t}} \boldsymbol{\epsilon}_{\theta} (\mathbf{x}_t, t) \right)$
 $L_{t-1} - C = \mathbb{E}_{\mathbf{x}_0, \boldsymbol{\epsilon}} \left[\frac{\beta_t^2}{2\sigma_t^2 \alpha_t (1 - \bar{\alpha}_t)} \left\| \boldsymbol{\epsilon} - \boldsymbol{\epsilon}_{\theta} \left(\sqrt{\bar{\alpha}_t} \mathbf{x}_0 + \sqrt{1 - \bar{\alpha}_t} \boldsymbol{\epsilon}, t \right) \right\|^2 \right]$

where ϵ_{θ} is a function approximator to predict ϵ form \mathbf{x}_{t} .

Experimentally, using unweighted loss and expectation of t shows better results

$$\mathbb{E}_{\mathbf{x}_{0},\boldsymbol{\epsilon},t}\left[\left\|\boldsymbol{\epsilon}-\boldsymbol{\epsilon}_{\theta}\left(\sqrt{\bar{\alpha}_{t}}\mathbf{x}_{0}+\sqrt{1-\bar{\alpha}_{t}}\boldsymbol{\epsilon},t\right)\right\|^{2}\right]$$

where $t \sim \text{Unif}\{1, \dots, T\}, \epsilon_{\theta}$ is a function approximator to predict ϵ form \mathbf{x}_{t} .

Sampling algorithm

Algorithm 2 Sampling

1:
$$\mathbf{x}_T \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$$

2: for $t = T, \dots, 1$ do
3: $\mathbf{z} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$ if $t > 1$, else $\mathbf{z} = \mathbf{0}$
4: $\mathbf{x}_{t-1} = \frac{1}{\sqrt{\alpha_t}} \left(\mathbf{x}_t - \frac{1-\alpha_t}{\sqrt{1-\bar{\alpha}_t}} \boldsymbol{\epsilon}_{\theta}(\mathbf{x}_t, t) \right) + \sigma_t \mathbf{z}$
5: end for
6: return \mathbf{x}_0

Figure: Sampling algorithm

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Note that for constants c_2, \cdots, c_T ,

$$L_{t-1} - C = \mathbb{E}_{\mathbf{x}_0, \mathbf{x}_t} \left[c_t \left\| \nabla_{\mathbf{x}_t} \log q(\mathbf{x}_t \mid \mathbf{x}_0) + \frac{\boldsymbol{\epsilon}_{\theta} \left(\mathbf{x}_t, t \right)}{\sqrt{1 - \bar{\alpha}_t}} \right\|^2 \right]$$

DDPM estimates negative gradients of logarithm of conditional densities.

Table of Contents

Diffusion model

DDPM as score based model

Theoretical result

▲□▶▲圖▶▲≣▶▲≣▶ ≣ の�?

Score based model

We can generally express continuous diffusion process as SDE

$$d\mathbf{x}_t = f(\mathbf{x}_t, t)dt + g(t)dw$$

where f(·, t) : ℝ^d → ℝ^d is vector valued function called drift coefficient of xt and g : ℝ → ℝ is a scalar function called diffusion coefficient of xt and w is a Wiener process.
It is known that reverse of diffusion process is also a diffusion process

$$d\mathbf{x}_t = [f(\mathbf{x}_t, t) - g(t)^2 \nabla_{\mathbf{x}_t} \log q(\mathbf{x}_t)] dt + g(t) d\bar{w}$$

- コン・4回ン・4回ン・4回ン・4回ン・4日ン

where \bar{w} is Wiener process when time flows backwards.

• The aim of score based generative model is to estimate $\nabla_{\mathbf{x}_t} \log q(\mathbf{x}_t)$.

$$\boldsymbol{\theta}^* = \arg\min_{\boldsymbol{\theta}} \mathbb{E}_t \left\{ \lambda(t) \mathbb{E}_{\mathbf{x}_t} \left[\| \mathbf{s}_{\boldsymbol{\theta}}(\mathbf{x}_t, t) - \nabla_{\mathbf{x}_t} \log q(\mathbf{x}_t) \|_2^2 \right] \right\}$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ · □ · ○ ○ ○

where $\lambda : [0, T] \to \mathbb{R}^+$ is a positive weight function.

Except constant, it is equivalent to

$$\boldsymbol{\theta}^* = \operatorname*{arg\,min}_{\boldsymbol{\theta}} \mathbb{E}_t \left\{ \lambda(t) \mathbb{E}_{\mathbf{x}_0} \mathbb{E}_{\mathbf{x}_t \mid \mathbf{x}_0} \left[\| \mathbf{s}_{\boldsymbol{\theta}}(\mathbf{x}_t, t) - \nabla_{\mathbf{x}_t} \log q(\mathbf{x}_t \mid \mathbf{x}_0) \|_2^2 \right] \right\}$$

• After estimate θ^* as $\hat{\theta}$, we sample using discretize reverse-time *SDE*:

$$\mathbf{x}_{t-1} = \mathbf{x}_t - \mathbf{f}(\mathbf{x}_t, t) + g(t)^2 \mathbf{s}_{\hat{\theta}}(\mathbf{x}_t, t) + g(t)\epsilon_t,$$

where $\epsilon_t \sim N(\mathbf{0}, \mathbf{I}_D)$.

DDPM as continuous SDE

In DDPM, x_t can be represented as

$$\mathbf{x}_t = \sqrt{1 - \beta_t} \mathbf{x}_{t-1} + \sqrt{\beta_t} \epsilon_{t-1}$$

where $\epsilon_i \sim N(\mathbf{0}, \mathbf{I}_D)$ for $i = 1, \cdots, t$.

And \mathbf{x}_{t-1} is $\mathbf{x}_{t-1} = \frac{1}{\sqrt{1-\beta_t}} (\mathbf{x}_t + \beta_t s_{\theta^*}(\mathbf{x}_t, t)) + \sqrt{\beta_t} \epsilon_t$ when $s_{\theta}(\mathbf{x}_t, t) = -\frac{\epsilon_{\theta}(\mathbf{x}_t, t)}{\sqrt{1-\beta_t}}$ and θ^* is a true parameter.

- コン・4回シュービン・4回シューレー

DDPM as continuous SDE

As t goes to ∞ , it converges to SDE

$$d\mathbf{x}_t = -\frac{1}{2}\beta_t \mathbf{x}_t dt + \sqrt{\beta_t} dw$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

where w is Wiener process.

Example

► VE SDE :
$$d\mathbf{x}_t = \sqrt{\frac{d\beta_t^2}{dt}} dw$$
 (NSCN)
► VP SDE : $d\mathbf{x}_t = -\frac{1}{2}\beta_t \mathbf{x}_t dt + \sqrt{\beta_t} dw$
► sub VP SDE : $d\mathbf{x}_t = -\frac{1}{2}\beta_t \mathbf{x}_t dt + \sqrt{\beta_t (1 - e^{-2\int_0^t \beta_s ds})} dw$

Table of Contents

Diffusion model

DDPM as score based model

Theoretical result

<□> <@> < E> < E> E のQ@

Theoretical result

Ornstein-Ulhenback (OU) process:

$$dx = -\frac{1}{2}\beta_t x dt + \sqrt{\beta_t} dw$$

Let q be the true density of \mathbf{x}_0 which is in Besov space $B_{a,b}^s$ and \hat{q} be estimated density of \hat{x}_0 which obtained through the process below:

$$\hat{\mathbf{x}}_{t-1} = \frac{1}{\sqrt{\alpha_t}} \left(\hat{\mathbf{x}}_t - \frac{1 - \alpha_t}{\sqrt{1 - \bar{\alpha}_t}} \boldsymbol{\epsilon}_{\hat{\theta}}(\hat{\mathbf{x}}_t, t) \right) + \sigma_t \mathbf{z}$$

where $z \sim \mathcal{N}(\mathbf{z}; \mathbf{0}, \mathbf{I}_D)$ then,

$$TV(\hat{q},q) \asymp n^{-s/(2s+D)}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 - のへぐ

where n is size of data and TV is total variance distance.