서울대학교 IDEA 연구실 석사과정 신윤섭

AN IMAGE IS WORTH 16x16 WORDS: TRANSFORMERS FOR IMAGE RECOGNITION AT SCALE

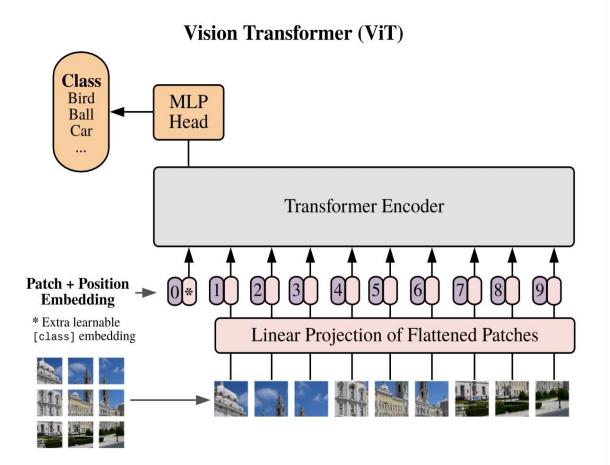
Alexey Dosovitskiy^{*,†}, Lucas Beyer^{*}, Alexander Kolesnikov^{*}, Dirk Weissenborn^{*}, Xiaohua Zhai^{*}, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby^{*,†} ^{*}equal technical contribution, [†]equal advising Google Research, Brain Team {adosovitskiy, neilhoulsby}@google.com

OUTLINE

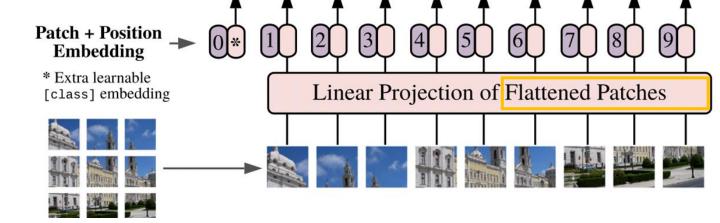
- Vision Transformer
- Comparison
- Experiment
- Self-Supervised Learning

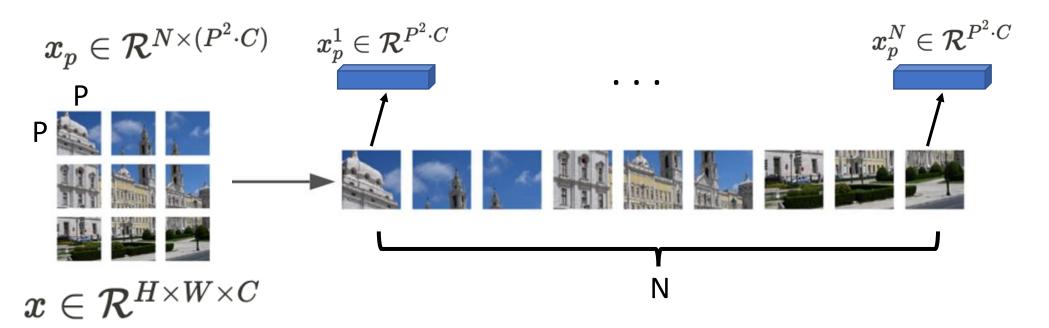
- The Transformer algorithm was first proposed in a paper published in 2021 by researchers from Google Brain.
- In vision, attention is either applied in conjunction with convolutional networks, or used to replace certain components of convolutional networks while keeping their overall structure in place.
- In this review, we will explore how images are applied to transformers and examine the differences between transformers in ViT and LLM. Additionally, we will briefly discuss self-supervised learning using ViT.

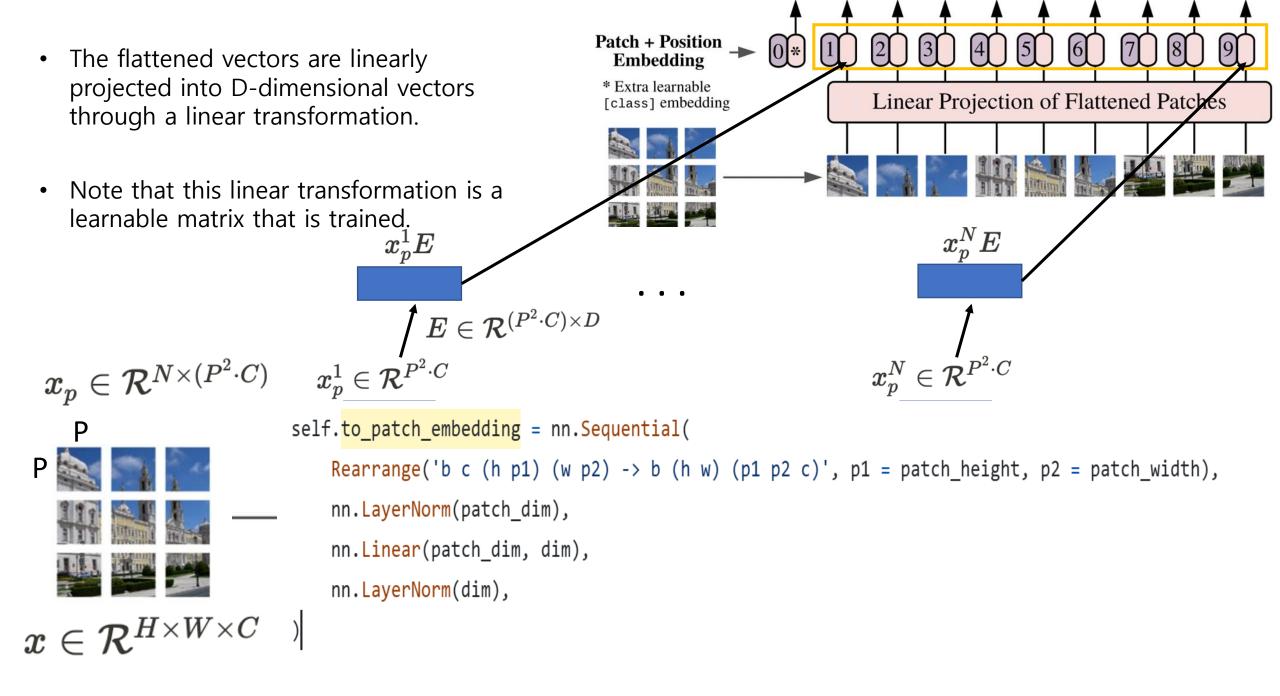
- ViT is used for image classification tasks.
- ViT use Encoder part of Transformer.
- ViT divides an image into multiple patches and then feeds them into the transformer as input.

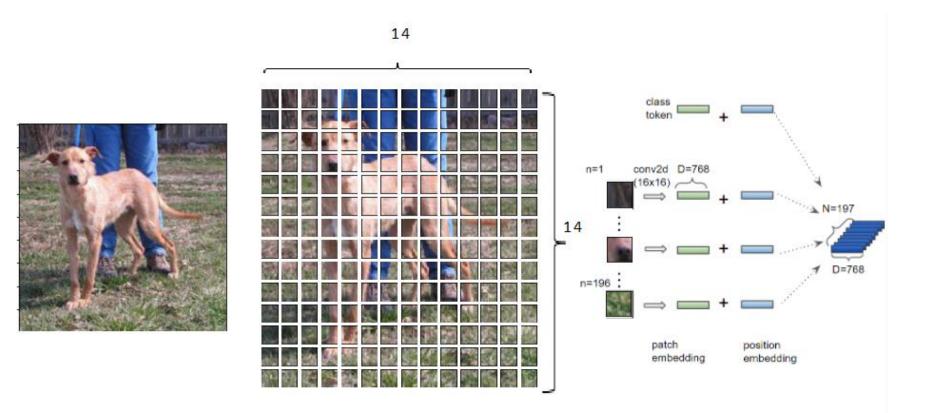


- H and W represent the number of pixels in an image.
- C represent channel of image.
- The image is divided into patches and flattened into vectors.



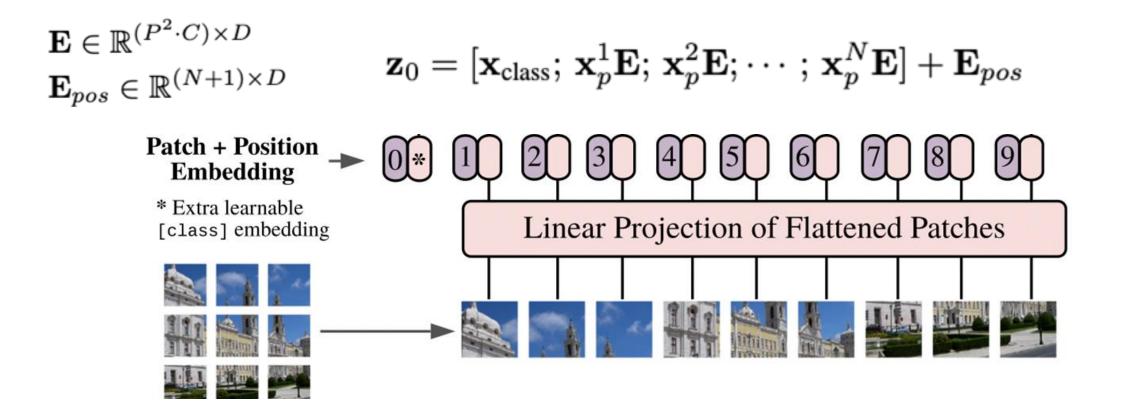


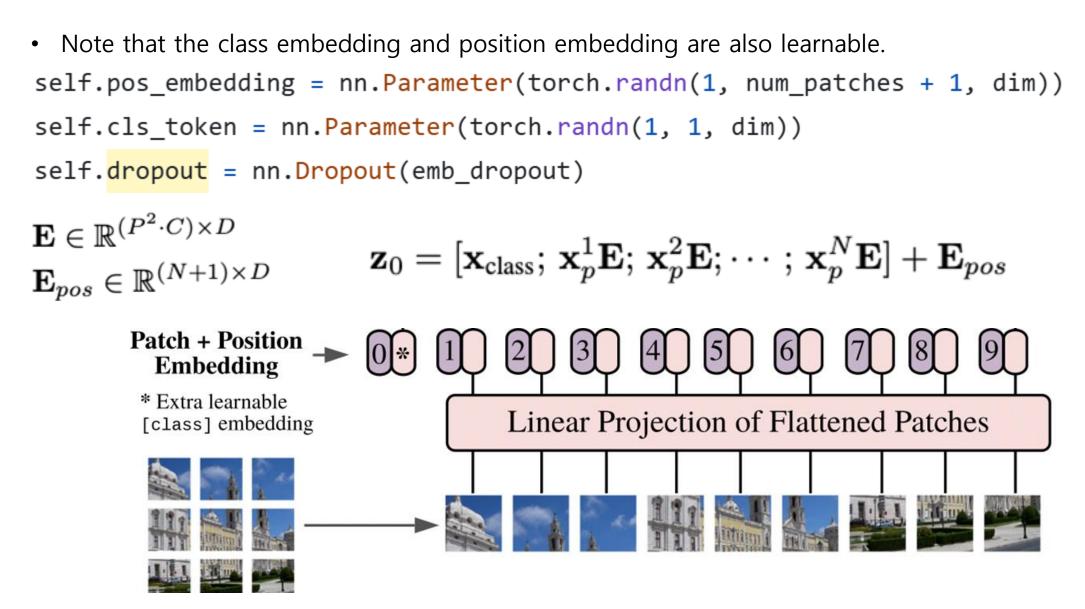




https://dkamatblog.home.blog/2021/08/05/vision-transformers-vit/

- Concatenate the class embedding, which is used to learn the representative characteristics of the entire image.
- And then add the position embedding that provides positional information.

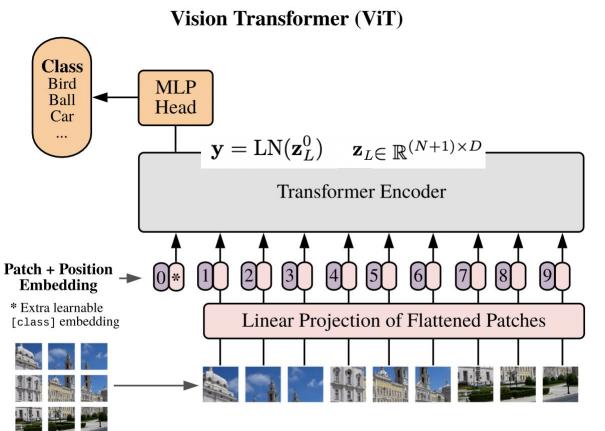




https://github.com/lucidrains/vit-pytorch/blob/main/vit_pytorch/vit.py

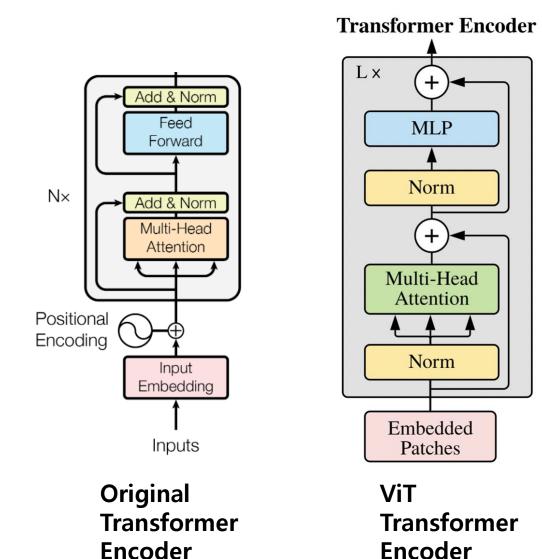
Transformer Encoder $\mathbf{z}_{L} \in \mathbb{R}^{(N+1) \times D}$ Lх ·+)**◄** MLP Norm + Multi-Head Attention Norm Embedded Patches

$$\begin{aligned} \mathbf{z}_{0} &= [\mathbf{x}_{\text{class}}; \, \mathbf{x}_{p}^{1} \mathbf{E}; \, \mathbf{x}_{p}^{2} \mathbf{E}; \cdots; \, \mathbf{x}_{p}^{N} \mathbf{E}] + \mathbf{E}_{pos}, & \mathbf{E} \in \mathbb{R}^{(P^{2} \cdot C) \times D}, \, \mathbf{E}_{pos} \in \mathbb{R}^{(N+1) \times D} \\ \mathbf{z}_{\ell}^{\prime} &= \mathrm{MSA}(\mathrm{LN}(\mathbf{z}_{\ell-1})) + \mathbf{z}_{\ell-1}, & \ell = 1 \dots L \\ \mathbf{z}_{\ell} &= \mathrm{MLP}(\mathrm{LN}(\mathbf{z}'_{\ell})) + \mathbf{z}'_{\ell}, & \ell = 1 \dots L \end{aligned}$$



- We use only the transformer output token corresponding to the class embedding position for the classification task.
- If you are interested in using all tokens, refer to 'All Tokens Matter: Token Labeling for Training Better Vision Transformers' by Zihang Jiang (2021).

02. Comparison

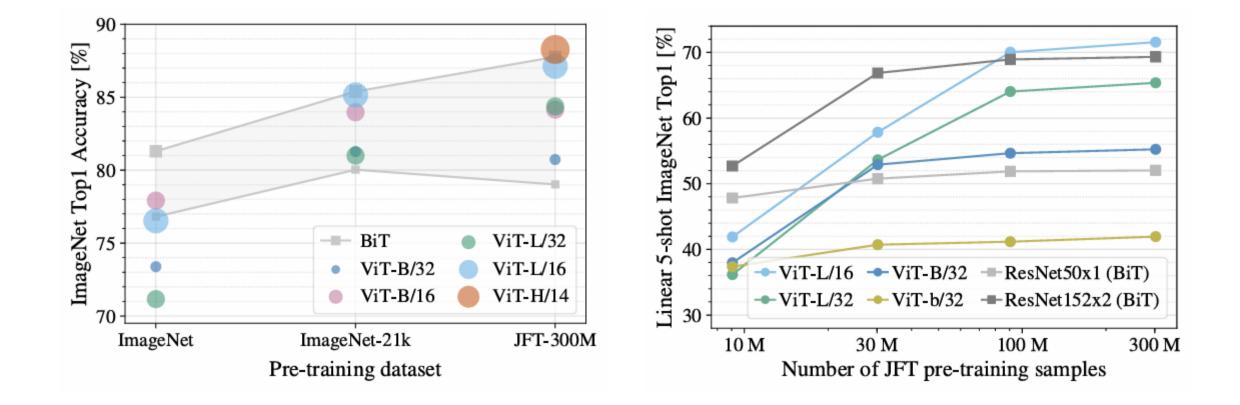


- While the original transformer applies normalization after the attention block, ViT applies normalization before the attention block.
- While the original transformer uses the ReLU function in the MLP process, ViT uses GeLU.
- In the original transformer, positional embeddings are fixed vectors, but in ViT, they are learnable parameters.

03. Experiment

	Ours-JFT (ViT-H/14)	Ours-JFT (ViT-L/16)	Ours-I21k (ViT-L/16)	BiT-L(JFT) (ResNet152x4)	Noisy Student (EfficientNet-L2)
ImageNet	88.55 ± 0.04	87.76 ± 0.03	85.30 ± 0.02	87.54 ± 0.02	$88.4/88.5^{*}$
ImageNet ReaL	90.72 ± 0.05	90.54 ± 0.03	88.62 ± 0.05	90.54	90.55
CIFAR-10	99.50 ± 0.06	99.42 ± 0.03	99.15 ± 0.03	99.37 ± 0.06	—
CIFAR-100	94.55 ± 0.04	93.90 ± 0.05	93.25 ± 0.05	93.51 ± 0.08	_
Oxford-IIIT Pets	97.56 ± 0.03	97.32 ± 0.11	94.67 ± 0.15	96.62 ± 0.23	—
Oxford Flowers-102	99.68 ± 0.02	99.74 ± 0.00	99.61 ± 0.02	99.63 ± 0.03	—
VTAB (19 tasks)	77.63 ± 0.23	76.28 ± 0.46	72.72 ± 0.21	76.29 ± 1.70	_
TPUv3-core-days	2.5k	0.68k	0.23k	9.9k	12.3k

03. Experiment



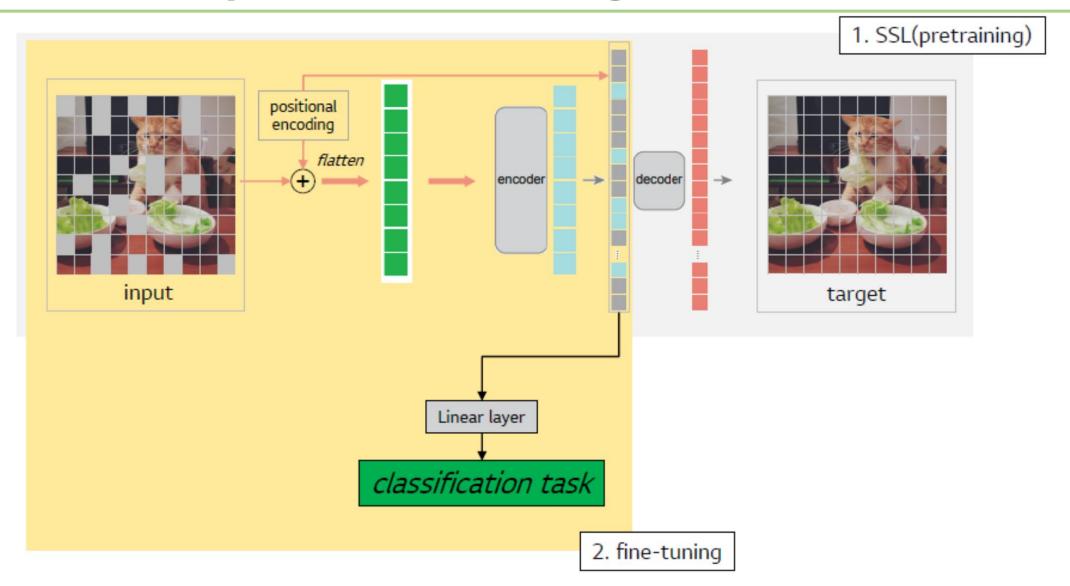
04. Self-Supervised Learning

- ViT benefits from being trained on large datasets and is used as a pre-trained model for transfer learning.
- However, in reality, do large datasets always have labels? No!!
- In such cases, how can we train ViT?

Masked Autoencoders Are Scalable Vision Learners

Kaiming He^{*,†} Xinlei Chen^{*} Saining Xie Yanghao Li Piotr Dollár Ross Girshick ^{*}equal technical contribution [†]project lead Facebook AI Research (FAIR)

04. Self-Supervised Learning



https://developers-shack.tistory.com/13

04. Self-Supervised Learning

Emerging Properties in Self-Supervised Vision Transformers

Mathilde Caron^{1,2}Hugo Touvron^{1,3}Ishan Misra¹Hervé Jegou¹Julien Mairal²Piotr Bojanowski¹Armand Joulin¹

¹ Facebook AI Research ² Inria^{*} ³ Sorbonne University

WHAT DO Self-Supervised Vision Transformers Learn?

Namuk Park^{1*} Wonjae Kim² Byeongho Heo² Taekyung Kim² Sangdoo Yun² ¹Prescient Design, Genentech ²NAVER AI Lab park.namuk@gene.com {wonjae.kim,bh.heo,taekyung.k,sangdoo.yun}@navercorp.com

End