

Attention is all you need

서울대학교 IDEA 연구실 박사과정 신윤섭

Attention Is All You Need

Ashish Vaswani* Google Brain avaswani@google.com Noam Shazeer* Google Brain noam@google.com Niki Parmar* Google Research nikip@google.com Jakob Uszkoreit* Google Research usz@google.com

Llion Jones* Google Research llion@google.com Aidan N. Gomez*[†] University of Toronto aidan@cs.toronto.edu

Łukasz Kaiser* Google Brain lukaszkaiser@google.com

Illia Polosukhin*[‡] illia.polosukhin@gmail.com

OUTLINE

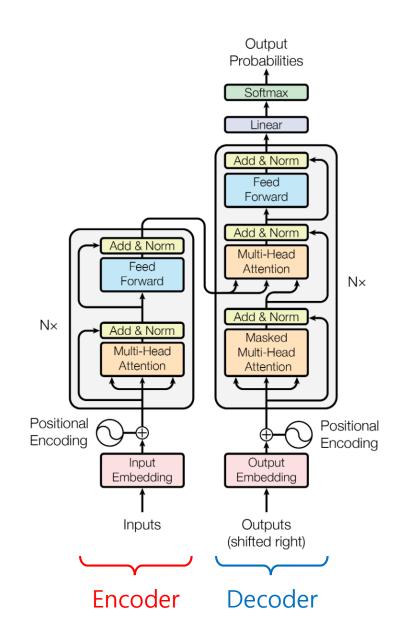
- **01** Transformer
- 02 Encoder
- 03 Decoder
- **04** Inference example
- **05** Experiment

01. Transformer

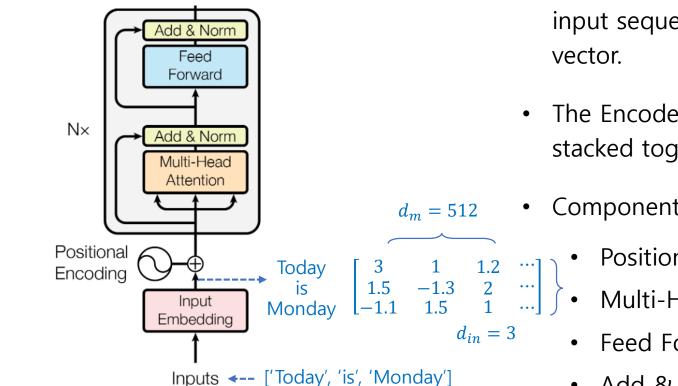
- The Transformer algorithm was first proposed in a paper published in 2017 by researchers from Google Brain.
- To overcome the limitations of RNN used in traditional sequence-to-sequence models, the Transformer completely avoids RNN structures and instead utilizes Attention mechanisms.

(This is why the paper is titled "Attention is all you need.")

- The Transformer consists of an Encoder and a Decoder, each made up of multiple sub-layers.
- In this review, we will focus on the overall structure of the Transformer.

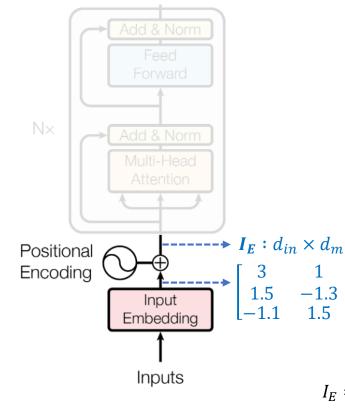


02. Encoder



- The encoder of the Transformer model serves to convert an • input sequence (e.g., a sentence) into a high-dimensional
- The Encoder part uses multiple identical Encoder blocks stacked together (the paper uses N=6).
- Components:
 - Positional Encoding
 - Multi-Head Attention
 - Feed Forward
 - Add & Norm •

02. Encoder - Positional Encoding



- Positional Encoding adds positional information to input matrix that lack order information.
- In this work, they use sine and cosine functions of different frequencies:

 $PE_{(pos,2i)} = sin(pos/10000^{2i/d_{\rm m}})$ $PE_{(pos,2i+1)} = cos(pos/10000^{2i/d_{\rm m}})$

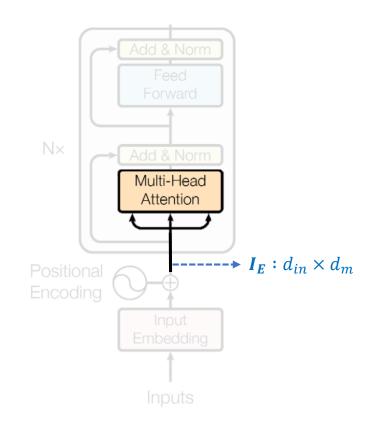
• Ex. Adding Positional Encoding to the sequence ['Today', 'is', 'Monday']

Encoding

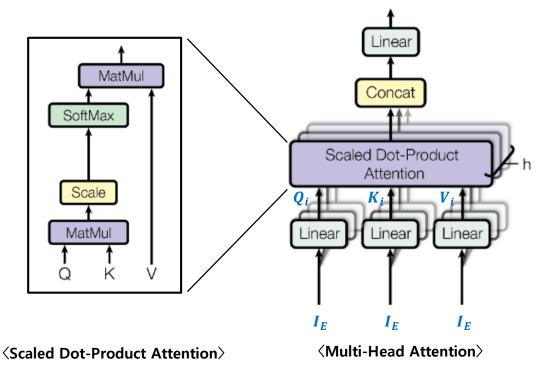
$$I_{Encoding} = \begin{bmatrix} 3 & 1 & 1.2 & \cdots \\ 1.5 & -1.3 & 2 & \cdots \\ -1.1 & 1.5 & 1 & \cdots \end{bmatrix}$$

$$I_{E} = \begin{bmatrix} 3 & 1 & 1.2 & \cdots \\ 1.5 & -1.3 & 2 & \cdots \\ -1.1 & 1.5 & 1 & \cdots \end{bmatrix} + \begin{bmatrix} \cos\left(\frac{1}{10^{4*(0/d_{m})}}\right) & \sin\left(\frac{1}{10^{4*(2*1/d_{m})}}\right) & \cos\left(\frac{1}{10^{4*(2*2/d_{m})}}\right) & \cdots \\ \cos\left(\frac{2}{10^{4*(0/d_{m})}}\right) & \sin\left(\frac{2}{10^{4*(2*1/d_{m})}}\right) & \cos\left(\frac{2}{10^{4*(2*2/d_{m})}}\right) & \cdots \\ \cos\left(\frac{3}{10^{4*(0/d_{m})}}\right) & \sin\left(\frac{3}{10^{4*(2*1/d_{m})}}\right) & \cos\left(\frac{3}{10^{4*(2*2/d_{m})}}\right) & \cdots \end{bmatrix}$$

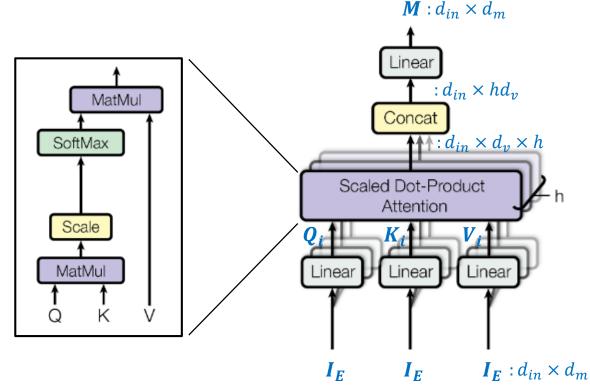
02. Encoder - Multi-head Attention (self-attention)



- Multi-Head Attention in the Encoder consists of h (the paper uses h = 8) self-Attention mechanisms.
- It calculates the relationships between words in the input sequence through these mechanisms.



02. Encoder - Multi-head Attention (self-attention)



Scaled Dot-Product Attention

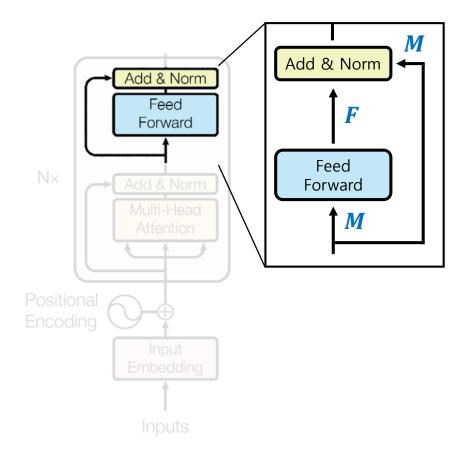
〈Multi-Head Attention〉

- Query, Key, Value are the product of the embedded sentence matrix and each weight matrix.
- Scaled Dot-Product Attention is equivalent to the Dot-Product attention multiplied by a scaling factor of $\frac{1}{\sqrt{d_k}}$ (where $d_k = 64$).
- Multi-Head Attention can be expressed with the following formula.

 $M = MultiHead(I_E, I_E, I_E) = Concat(head_1, \dots, head_h)W^o$ where $head_i = Attention(I_EW_i^Q, I_EW_i^K, I_EW_i^V)$ $Attention(Q, K, V) = softmax\left(\frac{QK^T}{\sqrt{d_k}}\right)V$

• Where the projection parameter matrix $W_i^Q, W_i^K \in \mathbb{R}^{d_m \times d_k}, W_i^V \in \mathbb{R}^{d_m \times d_v}, W^o \in \mathbb{R}^{hd_v \times d_m}$

02. Encoder - Feed Forward and Add & Norm layer



Feed Forward Neural Network

- The position-wise Feed-Forward Networks used in the Transformer are applied independently to each position.
- This consists of two linear transformation with a ReLu activation in between :

 $FNN(x) = W_2 ReLu(W_1 x + b_1) + b_2$

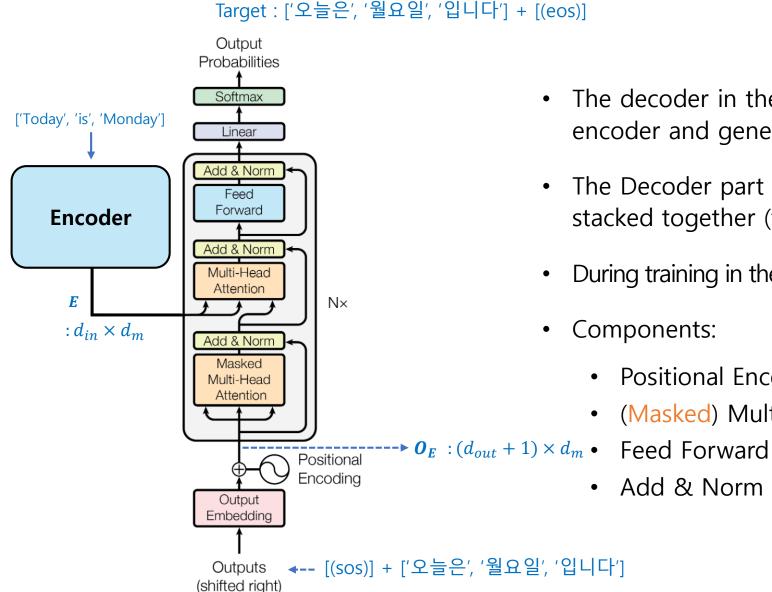
(Input and output dim : d_m , inner-layer dim : $d_{ff} = 2048$)

Add & Norm layer Add & Norm

- In the Transformer, each sub-layer's output is not used directly.
- Instead, the input and output of the sub-layer are added together and then layer normalization is applied.

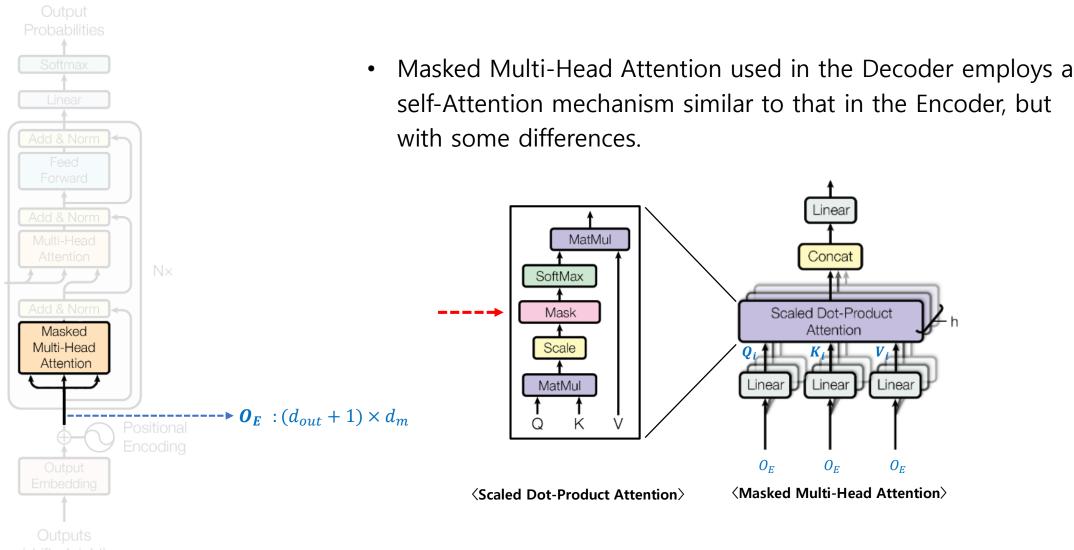
Add & Norm(M, S) = LayerNorm(M + S)

03. Decoder



- The decoder in the Transformer receives the output from the encoder and generates the target sequence.
- The Decoder part also uses multiple identical Decoder blocks stacked together (the paper uses N=6).
- During training in the Decoder, the teacher forcing method is used.
- Components:
 - Positional Encoding
 - (Masked) Multi-Head Attention
 - - Add & Norm

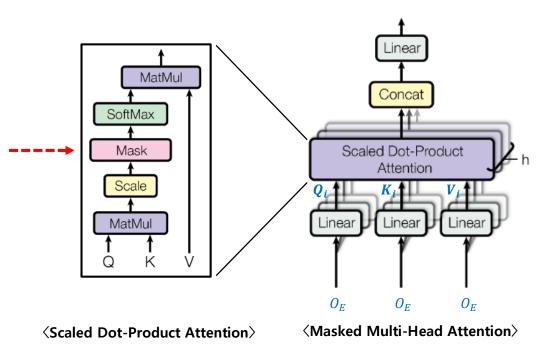
03. Decoder - Masked Multi-head Attention (self-attention)



(shifted right)

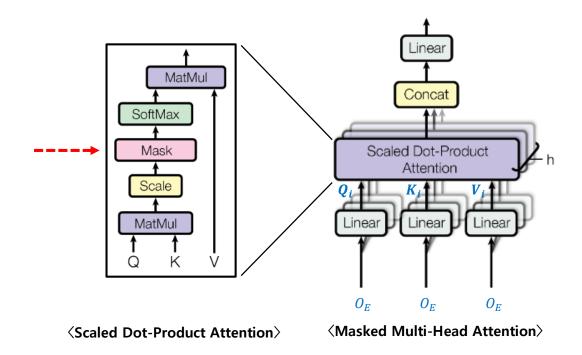
03. Decoder - Masked Multi-head Attention (self-attention)

- Since the Decoder operates sequentially, it cannot use information about words that appear after the current word in the attention scores.
- Therefore, the attention scores for words that appear after the reference word are replaced with -∞.



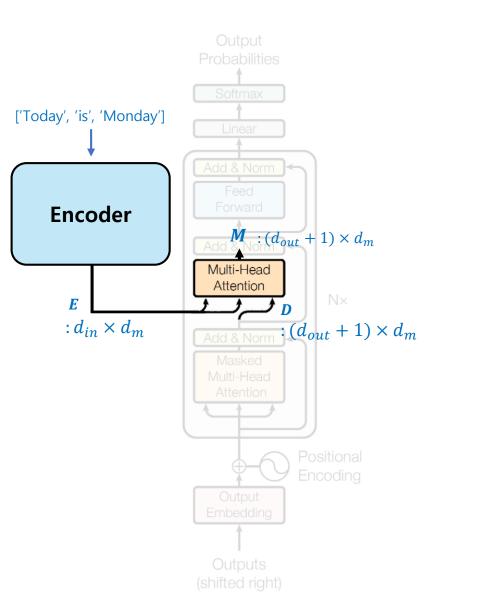
03. Decoder - Masked Multi-head Attention (self-attention)

- Since the Decoder operates sequentially, it cannot use information about words that appear after the current word in the attention scores.
- Therefore, the attention scores for words that appear after the reference word are replaced with -∞.

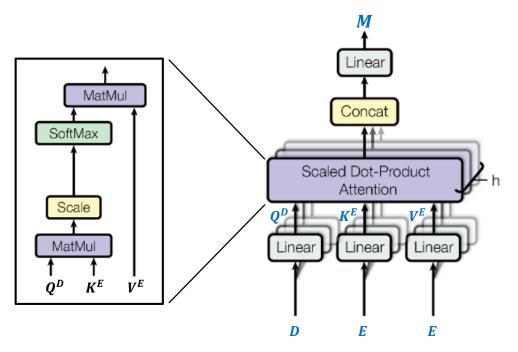


$Mask\left(\frac{QK^{T}}{\sqrt{d_{k}}}\right)$	(sos)	오늘은	월요일	입니다
(sos)	10	-∞	-∞	-∞
오늘은	1	8	-∞	-∞
월요일	1	2	9	-∞
입니다	1	2	1	7

03. Decoder - Multi-head Attention(encoder-decoder attention)

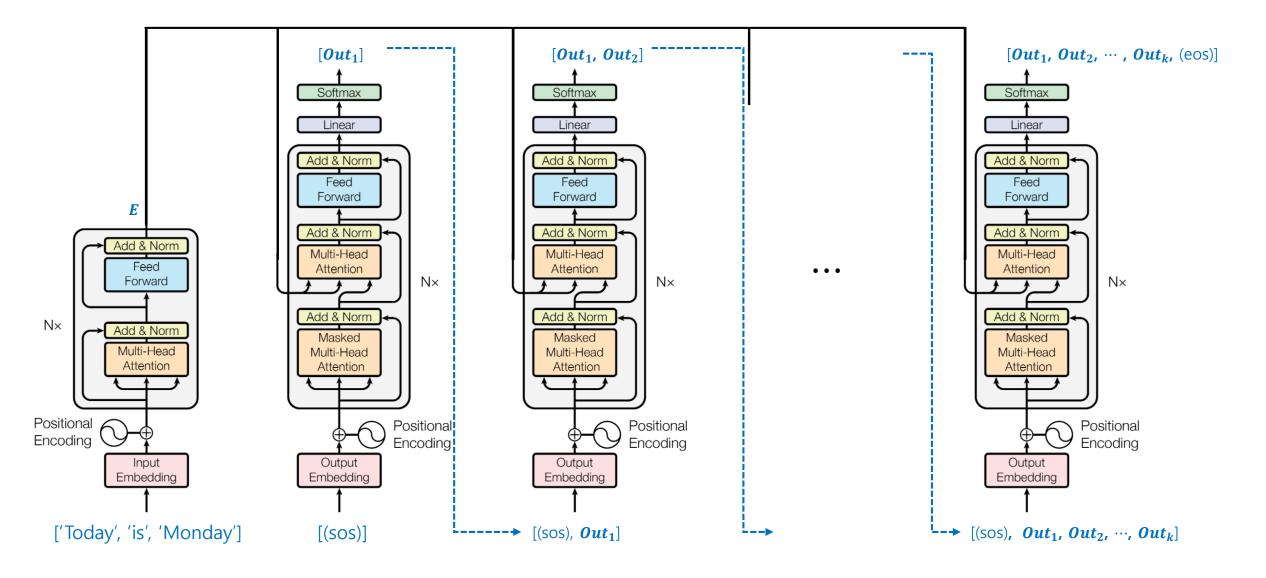


- In the Decoder block, the second Multi-Head Attention is the encoder-decoder attention.
- It uses the output from the encoder to compute the key and value matrices, and computes the query matrix using the output computed within the Decoder block.



Scaled Dot-Product Attention Scaled Dot-Product Attention

04. Inference example



05. Experiment

Madal	BLEU		Training Cost (FLOPs)	
Model	EN-DE	EN-FR	EN-DE	EN-FR
ByteNet [18]	23.75			
Deep-Att + PosUnk [39]		39.2		$1.0\cdot10^{20}$
GNMT + RL [38]	24.6	39.92	$2.3\cdot 10^{19}$	$1.4\cdot10^{20}$
ConvS2S [9]	25.16	40.46	$9.6\cdot10^{18}$	$1.5\cdot 10^{20}$
MoE [32]	26.03	40.56	$2.0\cdot10^{19}$	$1.2\cdot10^{20}$
Deep-Att + PosUnk Ensemble [39]		40.4		$8.0 \cdot 10^{20}$
GNMT + RL Ensemble [38]	26.30	41.16	$1.8\cdot 10^{20}$	$1.1\cdot 10^{21}$
ConvS2S Ensemble [9]	26.36	41.29	$7.7\cdot 10^{19}$	$1.2 \cdot 10^{21}$
Transformer (base model)	27.3	38.1	$3.3\cdot10^{18}$	
Transformer (big)	28.4	41.8	$2.3\cdot 10^{19}$	

End