
Transformer
Attention is all you need

서울대학교 IDEA 연구실

박사과정 신윤섭





OUTLINE

01    Transformer
02 Encoder
03 Decoder
04 Inference example
05 Experiment



01. Transformer

Encoder Decoder

• The Transformer algorithm was first proposed in a paper 

published in 2017 by researchers from Google Brain.

• To overcome the limitations of RNN used in traditional 

sequence-to-sequence models, the Transformer completely 

avoids RNN structures and instead utilizes Attention 

mechanisms. 

(This is why the paper is titled "Attention is all you need.")

• The Transformer consists of an Encoder and a Decoder, each 

made up of multiple sub-layers.

• In this review, we will focus on the overall structure of the 

Transformer.



02. Encoder

• The encoder of the Transformer model serves to convert an 

input sequence (e.g., a sentence) into a high-dimensional 

vector.

• The Encoder part uses multiple identical Encoder blocks 

stacked together (the paper uses N=6).

• Components:

• Positional Encoding

• Multi-Head Attention

• Feed Forward

• Add & Norm[‘Today’, ‘is’, ‘Monday’]

3
1.5

1
−1.3

−1.1 1.5

1.2
2

⋯
⋯

1 ⋯

Today
is

Monday

𝑑𝑚 = 512

𝑑𝑖𝑛 = 3



• Positional Encoding adds positional information to input matrix that lack 
order information.

• In this work, they use sine and cosine functions of different frequencies:

• Ex. Adding Positional Encoding to the sequence [‘Today’, ‘is’, ‘Monday’]

02. Encoder - Positional Encoding

𝑰𝑬 ∶ 𝑑𝑖𝑛 × 𝑑𝑚

3
1.5

1
−1.3

−1.1 1.5

1.2
2

⋯
⋯

1 ⋯

𝐼𝐸 =
3
1.5

1
−1.3

−1.1 1.5

1.2
2

⋯
⋯

1 ⋯
+

𝑐𝑜𝑠
1

104∗(0/𝑑𝑚)

𝑐𝑜𝑠
2

104∗(0/𝑑𝑚)

sin
1

104∗(2∗1/𝑑𝑚)

sin
2

104∗(2∗1/𝑑𝑚)

𝑐𝑜𝑠
3

104∗(0/𝑑𝑚)
sin

3

104∗(2∗1/𝑑𝑚)

𝑐𝑜𝑠
1

104∗(2∗2/𝑑𝑚)

𝑐𝑜𝑠
2

104∗(2∗2/𝑑𝑚)

⋯
⋯
⋯
⋯

𝑐𝑜𝑠
3

104∗(2∗2/𝑑𝑚)
⋯



02. Encoder - Multi-head Attention (self-attention)

• Multi-Head Attention in the Encoder consists of ℎ (the paper 

uses ℎ = 8) self-Attention mechanisms.

• It calculates the relationships between words in the input 

sequence through these mechanisms.

〈Scaled Dot-Product Attention〉 〈Multi-Head Attention〉

𝑰𝑬 𝑰𝑬 𝑰𝑬

𝑸𝒊 𝑲𝒊 𝑽𝒊

𝑰𝑬 ∶ 𝑑𝑖𝑛 × 𝑑𝑚



02. Encoder - Multi-head Attention (self-attention)

• Query, Key, Value are the product of the embedded 

sentence matrix and each weight matrix.

• Scaled Dot-Product Attention is equivalent to the  

Dot-Product attention multiplied by a scaling factor 

of
1

𝑑𝑘
(where 𝑑𝑘 = 64).

• Multi-Head Attention can be expressed with the 

following formula.

𝑀 = 𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑 𝐼𝐸 , 𝐼𝐸 , 𝐼𝐸 = 𝐶𝑜𝑛𝑐𝑎𝑡 ℎ𝑒𝑎𝑑1, ⋯ , ℎ𝑒𝑎𝑑ℎ 𝑊𝑜

where ℎ𝑒𝑎𝑑𝑖 = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝐼𝐸𝑊𝑖
𝑄
, 𝐼𝐸𝑊𝑖

𝐾 ,𝐼𝐸𝑊𝑖
𝑉)

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 𝑄,𝐾, 𝑉 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥
𝑄𝐾𝑇

𝑑𝑘
𝑉

• Where the projection parameter matrix 

𝑊𝑖
𝑄
,𝑊𝑖

𝐾 ∈ ℝ𝑑𝑚×𝑑𝑘 ,𝑊𝑖
𝑉 ∈ ℝ𝑑𝑚×𝑑𝑣 ,𝑊𝑜 ∈ ℝℎ𝑑𝑣×𝑑𝑚

〈Scaled Dot-Product Attention〉 〈Multi-Head Attention〉

𝑰𝑬 𝑰𝑬 𝑰𝑬

𝑸𝒊 𝑲𝒊 𝑽𝒊

𝑴 : 𝑑𝑖𝑛 × 𝑑𝑚

: 𝑑𝑖𝑛 × 𝑑𝑚

: 𝑑𝑖𝑛 × 𝑑𝑣 × ℎ

: 𝑑𝑖𝑛 × ℎ𝑑𝑣



• Feed Forward Neural Network

• The position-wise Feed-Forward Networks used in the 

Transformer are applied independently to each position.

• This consists of two linear transformation with a ReLu

activation in between :

02. Encoder - Feed Forward and Add & Norm layer

Feed
Forward

𝐹𝑁𝑁 𝑥 = 𝑊2𝑅𝑒𝐿𝑢 𝑊1𝑥 + 𝑏1 + 𝑏2

• Add & Norm layer

• In the Transformer, each sub-layer's output is not used 

directly. 

• Instead, the input and output of the sub-layer are added 

together and then layer normalization is applied.

𝐴𝑑𝑑&𝑁𝑜𝑟𝑚 𝑀, 𝑆 = 𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(𝑀 + 𝑆)

Add & Norm

Feed
Forward

𝑴

𝑭

𝑴

Add & Norm

(Input and output dim : 𝑑𝑚, inner-layer dim : 𝑑𝑓𝑓 = 2048) 



03. Decoder

• The decoder in the Transformer receives the output from the 

encoder and generates the target sequence. 

• The Decoder part also uses multiple identical Decoder blocks 

stacked together (the paper uses N=6).

• During training in the Decoder, the teacher forcing method is used.

• Components:

• Positional Encoding

• (Masked) Multi-Head Attention

• Feed Forward

• Add & Norm

[‘Today’, ‘is’, ‘Monday’]

Encoder

𝑬

[(sos)] + [‘오늘은’, ‘월요일’, ‘입니다’]

𝑶𝑬

: 𝑑𝑖𝑛 × 𝑑𝑚

: (𝑑𝑜𝑢𝑡 + 1) × 𝑑𝑚

Target : [‘오늘은’, ‘월요일’, ‘입니다’] + [(eos)]



03. Decoder - Masked Multi-head Attention (self-attention)

• Masked Multi-Head Attention used in the Decoder employs a 

self-Attention mechanism similar to that in the Encoder, but 

with some differences.

𝑶𝑬

〈Scaled Dot-Product Attention〉 〈Masked Multi-Head Attention〉

𝑂𝐸 𝑂𝐸 𝑂𝐸

𝑸𝒊 𝑲𝒊 𝑽𝒊

: (𝑑𝑜𝑢𝑡 + 1) × 𝑑𝑚



03. Decoder - Masked Multi-head Attention (self-attention)

(sos) 오늘은 월요일 입니다

(sos) 10 2 1 1

오늘은 1 8 1 4

월요일 1 2 9 1

입니다 1 2 1 7

𝑄𝐾𝑇

𝑑𝑘

MatMul

Scale

Q K
• Since the Decoder operates sequentially, it cannot use 

information about words that appear after the current word 

in the attention scores.

• Therefore, the attention scores for words that appear after 

the reference word are replaced with −∞.

〈Scaled Dot-Product Attention〉 〈Masked Multi-Head Attention〉

𝑂𝐸 𝑂𝐸 𝑂𝐸

𝑸𝒊 𝑲𝒊 𝑽𝒊



(sos) 오늘은 월요일 입니다

(sos) 10 −∞ −∞ −∞

오늘은 1 8 −∞ −∞

월요일 1 2 9 −∞

입니다 1 2 1 7

03. Decoder - Masked Multi-head Attention (self-attention)

𝑀𝑎𝑠𝑘
𝑄𝐾𝑇

𝑑𝑘

• Since the Decoder operates sequentially, it cannot use 

information about words that appear after the current word 

in the attention scores.

• Therefore, the attention scores for words that appear after 

the reference word are replaced with −∞.

〈Scaled Dot-Product Attention〉 〈Masked Multi-Head Attention〉

𝑂𝐸 𝑂𝐸 𝑂𝐸

𝑸𝒊 𝑲𝒊 𝑽𝒊



03. Decoder - Multi-head Attention(encoder-decoder attention)

• In the Decoder block, the second Multi-Head Attention is the 

encoder-decoder attention.

• It uses the output from the encoder to compute the key and 

value matrices, and computes the query matrix using the 

output computed within the Decoder block.

[‘Today’, ‘is’, ‘Monday’]

Encoder

𝑬 𝑫

〈Scaled Dot-Product Attention〉 〈Encoder-Decoder Multi-Head Attention〉

𝑫 𝑬 𝑬

𝑸𝑫 𝑲𝑬 𝑽𝑬

𝑸𝑫 𝑲𝑬 𝑽𝑬

: 𝑑𝑖𝑛 × 𝑑𝑚 : (𝑑𝑜𝑢𝑡 + 1) × 𝑑𝑚

𝑴
𝑴 : (𝑑𝑜𝑢𝑡 + 1) × 𝑑𝑚



04. Inference example

⋯

[‘Today’, ‘is’, ‘Monday’] [(sos)] 

𝑬

[𝑶𝒖𝒕𝟏]

[(sos), 𝑶𝒖𝒕𝟏]

[𝑶𝒖𝒕𝟏, 𝑶𝒖𝒕𝟐] [𝑶𝒖𝒕𝟏, 𝑶𝒖𝒕𝟐, ⋯ , 𝑶𝒖𝒕𝒌, (eos)]

[(sos), 𝑶𝒖𝒕𝟏, 𝑶𝒖𝒕𝟐, ⋯, 𝑶𝒖𝒕𝒌]

[𝑶𝒖𝒕𝟏, 𝑶𝒖𝒕𝟐]



05. Experiment



End


