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Sequence-to-Sequence (seq2seq) Models

▪ Machine Translation Problem

▪ Given a sentence in one language, the task is generating a sentence of same meaning in another l

anguage.
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Sequence-to-Sequence (seq2seq) Models

▪ Encoder-Decoder 
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Review : RNN Trade-offs

▪ RNN is not perfect yet :

▪ Issue 1) RNNs suffer from exploding/vanishing gradient problem, and thus it’s hard to model

long-range dependency. → LSTM/GRU

▪ Issue 2) many-to-many RNN is not flexible enough to deal with input/output sequences

of different length. → Seq2seq model
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Sequence-to-Sequence Models

▪ Many-to-Many RNN

▪ Input : 𝑥1, … , 𝑥𝑇

▪ Output : ŷ1, … , ŷ𝑇
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Sequence-to-Sequence Models

▪ Machine Translation Problem
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Sequence-to-Sequence Models

▪ Machine Translation Problem

▪ Our RNN assumes 1:1 relationship.

• Input length = output length

• Semantics of input[k] = output[k].
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Sequence-to-Sequence Models

▪ Encoder-Decoder Structure

▪ Let’s step back to the original encoder structure, without outputting at each step:
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Sequence-to-Sequence Models

▪ Encoder-Decoder Structure
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Sequence-to-Sequence Models

▪ Decoder : Auto-Regressive Generation

▪ At each step, given a hidden state (expected to carry information about input sequence; context) and the last output (indicati

ng where we are), it decides the next output token.
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Sequence-to-Sequence Models

▪ Decoder : Auto-Regressive Generation

▪ Auto-regressive input: the lagged (auto-regressive) values of the time series are used as inputs. 
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Sequence-to-Sequence Models

▪ Decoder : Teacher Forcing

▪ At training, we use the ground truth yt-1 as input, because the model needs to learn what to output from the correct i

nputs.

• Otherwise, the model may not train anything at the beginning!
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Sequence-to-Sequence Models

▪ Decoder : Teacher Forcing

▪ At inference, we do not have access to the ground truth yt-1, 

so we actually feed the previous output ŷt-1 auto-regressively.
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Sequence-to-Sequence Models

▪ Overall Sequence-to-Sequence (seq2seq) Model

▪ Many-to-one as encoder, then one-to-many as decoder.

▪ The input sequence is encoded as a single vector at the end of the encoder.

▪ From this single vector, the decoder generates output sequence.
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Comments / Q&A
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