Statistical Learning Theory

Section 5. Convex surrogate loss

Yongdai Kim December 6, 2021

Convex relaxation of the ERM

• In the previous sections, we have proved upper bounds on the excess risk $R(\hat{h}^{erm}) - R(h^*)$ of the empirical risk minimizer

$$\hat{h}^{erm} = \operatorname*{argmin}_{h \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^{n} \mathbb{I}(Y_i \neq h(X_i)).$$

- However, the objective function is nonconvex so that the optimization problem cannot be solved in general.
- To avoid the computational problem, the basic idea is to minimize a convex upper bound of the classification error function I(·). For the purpose, we shall also require that the function class H be a convex set.

Convex set

• We say a set C is convex if for all $x, y \in C$ and $\lambda \in [0, 1]$, $\lambda x + (1 - \lambda)y \in C$.

Convex function

• We say a function $f: D \to \mathbb{R}$ is convex if it satisfies

 $f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y), \forall x, y, \in D, \lambda \in [0, 1].$

The convex relaxation takes three steps.

(Step 1): Spinning

By the relaxation $h(X) \neq Y \iff -h(X)Y > 0$, $(Y \in \{-1, 1\})$ we rewrite the objective function by

$$\frac{1}{n}\sum_{i=1}^{n}\mathbb{I}(h(X_{i}\neq Y_{i}))=\frac{1}{n}\sum_{i=1}^{n}\phi_{1}(-h(X_{i})Y_{i})$$

where $\phi_1(z) = \mathbb{I}(z > 0)$.

(Step 2): Soft classifier

A soft classifier is any measurable function $f : \mathcal{X} \to [-1, 1]$. The hard classifier associated to a soft classifier f is given by h = sign(f).

(Step 2): Soft classifier (cont.)

Let $\mathcal{F}\in\mathbb{R}^{\mathcal{X}}$ be a convex set soft classifiers. Several popular choices of \mathcal{F} are:

- Linear functions: *F* := {*a*^T*x* : *a* ∈ *A*} for some convex set *A* ∈ ℝ^d. The associated hard classifier *h* splits ℝ^d into two half spaces.
- Majority votes: given weak classifiers h_1, \ldots, h_M , $\mathcal{F} = \{\sum_{j=1}^M \lambda_j h_j(x) : \lambda_j \ge 0, \sum \lambda_j = 1\}.$

(Step 3): Convex surrogate

Given a convex set ${\mathcal F}$ of soft classifiers, we need to solve

$$\min_{f\in\mathcal{F}}\frac{1}{n}\sum_{i=1}^n\phi_1(-f(X_i)Y_i).$$

However, while we are working with a convex constraint, the above objective is still not convex: we need a surrogate for the classification error.

Convex surrogate

A function $\phi : \mathbb{R} \to \mathbb{R}_+$ is called a *convex surrogate* if it is a convex non-decreasing function such that $\phi(0) = 1$ and $\phi(z) \ge \phi_1(z)$ for all $z \in \mathbb{R}$.

The following is a list of convex surrogates of loss functions.

- Hinge loss: $\phi(z) = \max(1+z, 0)$.
- Exponential loss: $\phi(z) = e^z$.
- Logistic loss: $\phi(z) = \log(1 + \exp(z))$.

We may use a convex surrogate ϕ in place of ϕ_1 and consider minimizing the *empirical* ϕ -risk defined by

$$\hat{R}_{n,\phi}(f) = \frac{1}{n} \sum_{i=1}^n \phi(-Y_i f(X_i)).$$

It is the empirical counterpart of the ϕ -risk R_{ϕ} defined by

$$R_{\phi}(f) = \mathsf{E}(\phi(-Yf(X))).$$

In this section, we derive the relation between the ϕ -risk $R_{\phi}(f)$ of a soft classifier f and the classification error $R(h) = P(h(X) \neq Y)$ of its associated hard classifier $h = \operatorname{sign}(f)$. Firstly let

$$f_{\phi}^* = \operatorname*{argmin}_{f \in \mathbb{R}^{\mathcal{X}}} \mathsf{E}(\phi(-Yf(X)))$$

where the infimum is taken over all measurable functions $f: \mathcal{X} \to \mathbb{R}.$

• We will first show that if $\phi(\cdot)$ is differentiable, then sign $(f_{\phi}^*(X)) \ge 0$ is equivalent to $\eta(X) \ge 1/2$ where $\eta(X) = P(Y = 1|X)$. Conditional on $\{X = x\}$, we have

$$\mathsf{E}(\phi(-Yf(X))|X=x) = \eta(x)\phi(-f(x)) + (1 - \eta(x))\phi(f(x)).$$

• Now let $H_{\eta}(\alpha) = \eta(x)\phi(-\alpha) + (1 - \eta(x))\phi(\alpha)$ so that

$$f_{\phi}^{*}(x) = \operatorname*{argmin}_{\alpha \in \mathbb{R}} H_{\eta}(\alpha), \text{ and } R_{\phi}^{*} = \min_{f} R_{\phi}(f) = \min_{\alpha \in \mathbb{R}} H_{\eta(x)}(\alpha).$$

ϕ -risk minization

- Since ϕ is differentiable, setting the derivative of $H_{\eta}(\alpha)$ to zero gives $f_{\phi}^*(x) = \bar{\alpha}$, where $H'_{\eta}(\bar{\alpha}) = -\eta(x)\phi'(-\bar{\alpha}) + (1 - \eta(x))\phi'(\bar{\alpha}) = 0$, which gives $\frac{\eta(x)}{1 - \eta(x)} = \frac{\phi'(\alpha)}{\phi'(-\bar{\alpha})}.$
- Since ϕ is convex, its derivative ϕ' is non-decreasing. Then we have $\eta(x) \ge 1/2 \iff \bar{\alpha} \ge 0 \iff \operatorname{sign}(f_{\phi}^*(x)) \ge 0$.
- Since the equivalence relation holds for all $x \in \mathcal{X}$,

$$\eta(X) \ge 1/2 \iff \operatorname{sign}(f_{\phi}^*(X)) \ge 0.$$

The following lemma shows that if the excess ϕ -risk $R_{\phi}(f) - R_{\phi}^*$ of a soft classifier f is small, then the excess-risk of its associated hard classifier sign(f) is also small.

Zhang's Lemma:

Let $\phi : \mathbb{R} \to \mathbb{R}_+$ be a convex non-decreasing function such that $\phi(0) = 1$. Define for any $\eta \in [0, 1]$, $\tau(\eta) := \inf_{\alpha \in \mathbb{R}} H_{\eta}(\alpha)$. If there exists c > 0 and $\gamma \in [0, 1]$ such that

$$|\eta-rac{1}{2}|\leq c(1- au(\eta))^\gamma, orall\eta\in [0,1],$$

then

$$R(\operatorname{sign}(f)) - R^* \leq 2c(R_\phi(f) - R_\phi^*)^\gamma.$$

It is not hard to check the following values for the quantities $\tau(\eta), c$ and γ for the three losses introduced above:

- Hinge loss: $\tau(\eta) = 1 |1 2\eta|$ with c = 1/2 and $\gamma = 1$.
- Exponential loss: $\tau(\eta) = 2\sqrt{\eta(1-\eta)}$ with $c = 1/\sqrt{2}$ and $\gamma = 1/2$.
- Logistic loss: $\tau(\eta) = -\eta \log \eta (1 \eta) \log(1 \eta)$ with $c = 1/\sqrt{2}$ and $\gamma = 1/2$.

Bounding
$$R_{\phi}(\hat{f}) - R_{\phi}(\bar{f})$$

Recall that

$$\hat{h} = \operatorname*{argmin}_{h \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^{n} \mathbb{I}(h(X_i) \neq Y_i).$$

By considering soft classifiers (i.e., whose output is in [-1,1] rather than in $\{0,1\}$) and convex surrogates of the loss function (e.g., hinge, exponential, logistic), we can write:

$$\hat{f} = \underset{f \in \mathcal{F}}{\operatorname{argmin}} \hat{R}_{\phi,n}(f) = \underset{f \in \mathcal{F}}{\operatorname{argmin}} \frac{1}{n} \sum_{i=1}^{n} \phi(-Y_i f(X_i)),$$

and $\hat{h} = \operatorname{sign}(\hat{f})$ will be used as the corresponding hard classifier.

Now, we want to bound the quantity $R_{\phi}(\hat{f}) - R_{\phi}(\bar{f})$, where $\bar{f} = \operatorname{argmin}_{f \in \mathcal{F}} R_{\phi}(f)$. It can be derived by the several following steps.

•
$$\hat{f} = \operatorname{argmin}_{f \in \mathcal{F}} \hat{R}_{\phi,n}(f)$$
, thus
 $R_{\phi}(\hat{f}) = R_{\phi}(\bar{f}) + \hat{R}_{\phi,n}(\bar{f}) - \hat{R}_{\phi,n}(\bar{f}) + \hat{R}_{\phi,n}(\hat{f}) - \hat{R}_{\phi,n}(\hat{f}) + \hat{R}_{\phi}(\hat{f}) - \hat{R}_{\phi}(\bar{f})$
 $\leq R_{\phi}(\bar{f}) + \hat{R}_{\phi,n}(\bar{f}) - \hat{R}_{\phi,n}(\hat{f}) + \hat{R}_{\phi}(\hat{f}) - \hat{R}_{\phi}(\bar{f})$ (1)
 $\leq R_{\phi}(\bar{f}) + 2 \sup_{f \in \mathcal{F}} |\hat{R}_{\phi,n}(f) - R_{\phi}(f)|.$

Let us focus on E(sup_{f∈F} | R̂_{φ,n}(f) - R_φ(f)|). Using the symmetrization trick as before, we know it is upper-bounded by 2R_n(φ ∘ F), where the Rademacher complexity is written as

$$\mathcal{R}_n(\phi \circ \mathcal{F}) = \sup_{X_1, \dots, X_n, Y_1, \dots, Y_n} \mathsf{E}(\sup_{f \in \mathcal{F}} |\frac{1}{n} \sum_{i=1}^n \sigma_i \phi(-Y_i f(X_i))|).$$

• One thing to notice is that $\phi(0) = 1$ for the loss functions we consider, but in order to apply contraction inequality later, we require $\phi(0) = 0$. Let us define $\psi(\cdot) = \phi(\cdot) - 1$. Clearly $\psi(0) = 0$, and

$$E(\sup_{f\in\mathcal{F}}|\frac{1}{n}\sum_{i=1}^{n}(\phi(-Y_{i}f(X_{i}))-E(\phi(-Y_{i}f(X_{i})))|)$$

$$=E(\sup_{f\in\mathcal{F}}|\frac{1}{n}\sum_{i=1}^{n}(\psi(-Y_{i}f(X_{i}))-E(\psi(-Y_{i}f(X_{i})))|) \quad (2)$$

$$\leq 2\mathcal{R}_{n}(\psi\circ\mathcal{F}).$$

 The Rademacher complexity of ψ ∘ F is still difficult to deal with. Let us assume that φ is L-Lipschitz, (as a result, ψ is also L-Lipschitz), apply the contraction inequality, we have

$$\mathcal{R}_n(\psi \circ \mathcal{F}) \le 2L\mathcal{R}_n(\mathcal{F}). \tag{3}$$

Bounding
$$R_{\phi}(\hat{f}) - R_{\phi}(\bar{f})$$

• Let
$$Z_i = (X_i, Y_i), i = 1, 2, ..., n$$
 and

$$g(Z_1,\ldots,Z_n) = \sup_{f\in\mathcal{F}} |\hat{R}_{\phi,n}(f) - R_{\phi}(f)|$$

$$= \sup_{f \in \mathcal{F}} \left| \frac{1}{n} \sum_{i=1}^{n} (\phi(-Y_i f(X_i)) - \mathsf{E}(\phi(-Y_i f(X_i)))) \right|$$

Since φ(·) is monotonically increasing, it is not difficult to verify that ∀Z₁,..., Z_n, Z'_i,

$$egin{aligned} &|g(Z_1,\ldots,Z_i,\ldots,Z_n)-g(Z_1,\ldots,Z_i',\ldots,Z_n)|\ &\leq rac{1}{n}(\phi(1)-\phi(-1))\leq rac{2L}{n}. \end{aligned}$$

Bounding
$$R_{\phi}(\hat{f}) - R_{\phi}(\bar{f})$$

• The last inequality holds since g is *L*-Lipschitz. By applying the Bounded Difference Inequality, we have

$$\begin{split} \mathsf{P}(|\sup_{f\in\mathcal{F}}|\hat{R}_{\phi,n}(f)-R_{\phi}(f)|-\mathsf{E}(\sup_{f\in\mathcal{F}}|\hat{R}_{\phi,n}(f)-R_{\phi}(f)|)|>t)\\ &\leq 2\exp(-\frac{2t^2}{\sum_{i=1}^n(2L/n)^2}). \end{split}$$

• Set the RHS of above equation to δ , we get:

$$\sup_{f \in \mathcal{F}} |\hat{R}_{\phi,n}(f) - R_{\phi}(f)| \leq \mathsf{E}(\sup_{f \in \mathcal{F}} |\hat{R}_{\phi,n}(f) - R_{\phi}(f)|) + 2L\sqrt{\frac{\log(2/\delta)}{2n}}.$$
(4)

- Now, the above steps allow us to compute the bound of $R_{\phi}(\hat{f}) R_{\phi}(\bar{f}).$
- That is, combining equations (1) to (4), we have

$$R_{\phi}(\hat{f}) \leq R_{\phi}(\bar{f}) + 8L\mathcal{R}_n(\mathcal{F}) + 2L\sqrt{rac{\log(2/\delta)}{2n}}$$

with probability $1 - \delta$.

Boosting

- We will specialize the above analysis to a particular learning model: **Boosting**. The basic idea of Boosting is to convert a set of weak learners (i.e., classifiers that do better than random, but have high error probability) into a strong one by using the weighted average of weak learners' opinions.
- More precisely, we consider the following function class

$$\mathcal{F} = \{ \sum_{j=1}^{M} \theta_j h_j(\cdot) : |\theta|_1 \le 1, \\ h_j : \mathcal{X} \to [-1, 1], j \in \{1, \dots, M\} \text{ are (weak) classifiers} \}$$
(5)

Boosting

 We want to compute the upper bound R_n(F) for this choice of F.

$$\mathcal{R}_{n}(\mathcal{F}) = \sup_{Z_{1},...,Z_{n}} \mathsf{E}\left(\sup_{f\in\mathcal{F}} \left|\frac{1}{n}\sum_{i=1}^{n}\sigma_{i}Y_{i}f(X_{i})\right|\right)$$
$$= \frac{1}{n}\sup_{Z_{1},...,Z_{n}} \mathsf{E}\left(\sup_{\left|\theta\right|\leq1}\left|\sum_{j=1}^{M}\theta_{j}\sum_{i=1}^{n}Y_{i}\sigma_{i}h_{j}(X_{i})\right|\right)$$
(6)

• It turns out that (HW)

$$\mathcal{R}_n(\mathcal{F}) \leq \sqrt{\frac{2\log(4M)}{n}}.$$

• Thus for Boosting,

wit

$$R_{\phi}(f) \leq R_{\phi}(\bar{f}) + 8L\sqrt{rac{2\log(4M)}{n}} + 2L\sqrt{rac{\log(2/\delta)}{2n}}$$

h probability $1 - \delta$.

To get some ideas of what values of Lipschitz constant L usually takes, consider the following examples:

- for hinge loss, i.e., $\phi(x) = (1+x)_+$, L = 1.
- for exponential loss, i.e., $\phi(x) = e^x$, L = e.
- for logistic loss, i.e., $\phi(x) = \log(1 + e^x)$, $L = e \log_2(e)/(1 + e) \approx 2.43$.

- Now we have bounded $R_{\phi}(\hat{f}) R_{\phi}(f)$, but this is not yet the excess risk.
- Recall that the excess risk of \hat{f} is defined as $R(\hat{f}) R(f^*)$, where $f^* = \operatorname{argmin}_{f \in \mathcal{F}} R_{\phi}(f)$.
- The following theorem in the next page provides a bound for excess risk for Boosting.

Theorem

Let $\mathcal{F} = \{\sum_{j=1}^{M} \theta_j h_j : ||\theta||_1 \le 1, h_j s \text{ are weak classifiers} \}$ and ϕ is an *L*-Lipschitz convex surrogate. Define $\hat{f} = \operatorname{argmin}_{f \in \mathcal{F}} R_{\phi,n}(f)$ and $\hat{h} = \operatorname{sign}(\hat{f})$. Then,

$$R(\hat{h}) - R^* \leq 2c \left(\inf_{f \in \mathcal{F}} R_{\phi}(f) - R_{\phi}(f^*) \right)^{\gamma} + 2c \left(8L \sqrt{\frac{2\log(4M)}{n}} \right)^{\gamma} + 2c \left(2L \sqrt{\frac{\log(2/\delta)}{2n}} \right)^{\gamma}$$

$$(7)$$

with probability $1 - \delta$.

- $O(\sqrt{1/n})$ upper bound of the excess risk is not tight.
- Under certaint conditions, it can be shown that the tight upper bound of excess risk is in between O(1/n) and $(\sqrt{1/n})$.
- The proof of deriving the optimal bound is very technically involved.
- The optimal upper bound of the excess risk depends heavily on the choice of \mathcal{H} or \mathcal{F} .
- We do not cover how to calculate the complexity (i.e. VC dimension or covering number) of a given *H* or *F* (e.g. Boosting, RKHS, Deep neural networks,...), which is also very technically involved.