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Convex relaxation of the ERM

• In the previous sections, we have proved upper bounds on the
excess risk R(ĥerm)− R(h∗) of the empirical risk minimizer

ĥerm = argmin
h∈H

1
n

n∑
i=1

I(Yi 6= h(Xi )).

• However, the objective function is nonconvex so that the
optimization problem cannot be solved in general.

• To avoid the computational problem, the basic idea is to
minimize a convex upper bound of the classification error
function I(·). For the purpose, we shall also require that the
function class H be a convex set.
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Convexity

Convex set

• We say a set C is convex if for all x , y ∈ C and λ ∈ [0, 1],

λx + (1− λ)y ∈ C .

Convex function

• We say a function f : D → R is convex if it satisfies

f (λx + (1−λ)y) ≤ λf (x) + (1−λ)f (y),∀x , y ,∈ D, λ ∈ [0, 1].
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Convex relaxation

The convex relaxation takes three steps.

(Step 1): Spinning

By the relaxation h(X ) 6= Y ⇐⇒ −h(X )Y > 0, (Y ∈ {−1, 1})
we rewrite the objective function by

1
n

n∑
i=1

I(h(Xi 6= Yi )) =
1
n

n∑
i=1

φ1(−h(Xi )Yi )

where φ1(z) = I(z > 0).

(Step 2): Soft classifier

A soft classifier is any measurable function f : X → [−1, 1]. The
hard classifier associated to a soft classifier f is given by
h = sign(f ).
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Convex relaxation

(Step 2): Soft classifier (cont.)

Let F ∈ RX be a convex set soft classifiers. Several popular choices
of F are:

• Linear functions: F := {a>x : a ∈ A} for some convex set
A ∈ Rd . The associated hard classifier h splits Rd into two
half spaces.

• Majority votes: given weak classifiers h1, . . . , hM ,

F = {
∑M

j=1 λjhj(x) : λj ≥ 0,
∑
λj = 1}.
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Convex relaxation

(Step 3): Convex surrogate

Given a convex set F of soft classifiers, we need to solve

min
f ∈F

1
n

n∑
i=1

φ1(−f (Xi )Yi ).

However, while we are working with a convex constraint, the above
objective is still not convex: we need a surrogate for the
classification error.
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Convex relaxation

Convex surrogate

A function φ : R→ R+ is called a convex surrogate if it is a convex
non-decreasing function such that φ(0) = 1 and φ(z) ≥ φ1(z) for
all z ∈ R.

The following is a list of convex surrogates of loss functions.

• Hinge loss: φ(z) = max(1 + z , 0).

• Exponential loss: φ(z) = ez .

• Logistic loss: φ(z) = log(1 + exp(z)).

7



Convex relaxation

We may use a convex surrogate φ in place of φ1 and consider
minimizing the empirical φ-risk defined by

R̂n,φ(f ) =
1
n

n∑
i=1

φ(−Yi f (Xi )).

It is the empirical counterpart of the φ-risk Rφ defined by

Rφ(f ) = E(φ(−Yf (X ))).
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φ-risk minimization

In this section, we derive the relation between the φ-risk Rφ(f ) of a
soft classifier f and the classification error R(h) = P(h(X ) 6= Y ) of
its associated hard classifier h = sign(f ). Firstly let

f ∗φ = argmin
f ∈RX

E(φ(−Yf (X )))

where the infimum is taken over all measurable functions
f : X → R.
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φ-risk minimization

• We will first show that if φ(·) is differentiable, then
sign(f ∗φ (X )) ≥ 0 is equivalent to η(X ) ≥ 1/2 where
η(X ) = P(Y = 1|X ). Conditional on {X = x}, we have

E(φ(−Yf (X ))|X = x) = η(x)φ(−f (x)) + (1− η(x))φ(f (x)).

• Now let Hη(α) = η(x)φ(−α) + (1− η(x))φ(α) so that

f ∗φ (x) = argmin
α∈R

Hη(α), and R∗φ = min
f

Rφ(f ) = min
α∈R

Hη(x)(α).
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φ-risk minization

• Since φ is differentiable, setting the derivative of Hη(α) to
zero gives f ∗φ (x) = ᾱ, where
H ′η(ᾱ) = −η(x)φ′(−ᾱ) + (1− η(x))φ′(ᾱ) = 0, which gives

η(x)

1− η(x)
=

φ′(α)

φ′(−ᾱ)
.

• Since φ is convex, its derivative φ′ is non-decreasing. Then we
have η(x) ≥ 1/2 ⇐⇒ ᾱ ≥ 0 ⇐⇒ sign(f ∗φ (x)) ≥ 0.

• Since the equivalence relation holds for all x ∈ X ,

η(X ) ≥ 1/2 ⇐⇒ sign(f ∗φ (X )) ≥ 0.
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Zhang’s Lemma

The following lemma shows that if the excess φ-risk Rφ(f )− R∗φ of
a soft classifier f is small, then the excess-risk of its associated hard
classifier sign(f ) is also small.

Zhang’s Lemma:

Let φ : R→ R+ be a convex non-decreasing function such that
φ(0) = 1. Define for any η ∈ [0, 1], τ(η) := infα∈RHη(α). If there
exists c > 0 and γ ∈ [0, 1] such that

|η − 1
2
| ≤ c(1− τ(η))γ ,∀η ∈ [0, 1],

then
R(sign(f ))− R∗ ≤ 2c(Rφ(f )− R∗φ)γ .
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Zhang’s Lemma

It is not hard to check the following values for the quantities
τ(η), c and γ for the three losses introduced above:

• Hinge loss: τ(η) = 1− |1− 2η| with c = 1/2 and γ = 1.

• Exponential loss: τ(η) = 2
√
η(1− η) with c = 1/

√
2 and

γ = 1/2.

• Logistic loss: τ(η) = −η log η − (1− η) log(1− η) with
c = 1/

√
2 and γ = 1/2.
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Bounding Rφ(f̂ )− Rφ(f̄ )

Recall that

ĥ = argmin
h∈H

1
n

n∑
i=1

I(h(Xi ) 6= Yi ).

By considering soft classifiers (i.e., whose output is in [−1, 1] rather
than in {0, 1}) and convex surrogates of the loss function (e.g.,
hinge, exponential, logistic), we can write:

f̂ = argmin
f ∈F

R̂φ,n(f ) = argmin
f ∈F

1
n

n∑
i=1

φ(−Yi f (Xi )),

and ĥ = sign(f̂ ) will be used as the corresponding hard classifier.
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Bounding Rφ(f̂ )− Rφ(f̄ )

Now, we want to bound the quantity Rφ(f̂ )− Rφ(f̄ ), where
f̄ = argminf ∈F Rφ(f ). It can be derived by the several following
steps.

• f̂ = argminf ∈F R̂φ,n(f ), thus

Rφ(f̂ ) = Rφ(f̄ ) + R̂φ,n(f̄ )− R̂φ,n(f̄ ) + R̂φ,n(f̂ )− R̂φ,n(f̂ )

+ R̂φ(f̂ )− R̂φ(f̄ )

≤ Rφ(f̄ ) + R̂φ,n(f̄ )− R̂φ,n(f̂ ) + R̂φ(f̂ )− R̂φ(f̄ )

≤ Rφ(f̄ ) + 2 sup
f ∈F
|R̂φ,n(f )− Rφ(f )|.

(1)
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Bounding Rφ(f̂ )− Rφ(f̄ )

• Let us focus on E(supf ∈F |R̂φ,n(f )− Rφ(f )|). Using the
symmetrization trick as before, we know it is upper-bounded
by 2Rn(φ ◦F), where the Rademacher complexity is written as

Rn(φ ◦ F) = sup
X1,...,Xn,Y1,...,Yn

E(sup
f ∈F
|1
n

n∑
i=1

σiφ(−Yi f (Xi ))|).
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Bounding Rφ(f̂ )− Rφ(f̄ )

• One thing to notice is that φ(0) = 1 for the loss functions we
consider, but in order to apply contraction inequality later, we
require φ(0) = 0. Let us define ψ(·) = φ(·)− 1. Clearly
ψ(0) = 0, and

E(sup
f ∈F
|1
n

n∑
i=1

(φ (−Yi f (Xi ))− E (φ(−Yi f (Xi ))) |)

= E(sup
f ∈F
|1
n

n∑
i=1

(ψ (−Yi f (Xi ))− E (ψ(−Yi f (Xi ))) |)

≤ 2Rn(ψ ◦ F).

(2)
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Bounding Rφ(f̂ )− Rφ(f̄ )

• The Rademacher complexity of ψ ◦ F is still difficult to deal
with. Let us assume that φ is L-Lipschitz, (as a result, ψ is
also L-Lipschitz), apply the contraction inequality, we have

Rn(ψ ◦ F) ≤ 2LRn(F). (3)
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Bounding Rφ(f̂ )− Rφ(f̄ )

• Let Zi = (Xi ,Yi ), i = 1, 2, . . . , n and

g(Z1, . . . ,Zn) = sup
f ∈F
|R̂φ,n(f )− Rφ(f )|

= sup
f ∈F
|1
n

n∑
i=1

(φ(−Yi f (Xi ))− E(φ(−Yi f (Xi ))))|

• Since φ(·) is monotonically increasing, it is not difficult to
verify that ∀Z1, . . . ,Zn,Z

′
i ,

|g(Z1, . . . ,Zi , . . . ,Zn)− g(Z1, . . . ,Z
′
i , . . . ,Zn)|

≤ 1
n

(φ(1)− φ(−1)) ≤ 2L
n
.
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Bounding Rφ(f̂ )− Rφ(f̄ )

• The last inequality holds since g is L-Lipschitz. By applying
the Bounded Difference Inequality, we have

P(| sup
f ∈F
|R̂φ,n(f )− Rφ(f )| − E(sup

f ∈F
|R̂φ,n(f )− Rφ(f )|)| > t)

≤ 2 exp(− 2t2∑n
i=1(2L/n)2 ).

• Set the RHS of above equation to δ, we get:

sup
f ∈F
|R̂φ,n(f )− Rφ(f )| ≤ E(sup

f ∈F
|R̂φ,n(f )− Rφ(f )|)

+ 2L

√
log(2/δ)

2n
.

(4)
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Bounding Rφ(f̂ )− Rφ(f̄ )

• Now, the above steps allow us to compute the bound of
Rφ(f̂ )− Rφ(f̄ ).

• That is, combining equations (1) to (4), we have

Rφ(f̂ ) ≤ Rφ(f̄ ) + 8LRn(F) + 2L

√
log(2/δ)

2n

with probability 1− δ.
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Boosting

• We will specialize the above analysis to a particular learning
model: Boosting. The basic idea of Boosting is to convert a
set of weak learners (i.e., classifiers that do better than
random, but have high error probability) into a strong one by
using the weighted average of weak learners’ opinions.

• More precisely, we consider the following function class

F = {
M∑
j=1

θjhj(·) : |θ|1 ≤ 1,

hj : X → [−1, 1], j ∈ {1, . . . ,M} are (weak) classifiers}
(5)
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Boosting

• We want to compute the upper bound Rn(F) for this choice
of F .

Rn(F) = sup
Z1,...,Zn

E

(
sup
f ∈F
|1
n

n∑
i=1

σiYi f (Xi )|

)

=
1
n

sup
Z1,...,Zn

E

 sup
|θ|≤1
|

M∑
j=1

θj

n∑
i=1

Yiσihj(Xi )|

 (6)

• It turns out that (HW)

Rn(F) ≤
√

2 log(4M)

n
.

• Thus for Boosting,

Rφ(f ) ≤ Rφ(f̄ ) + 8L

√
2 log(4M)

n
+ 2L

√
log(2/δ)

2n
with probability 1− δ. 23



Boosting

To get some ideas of what values of Lipschitz constant L usually
takes, consider the following examples:

• for hinge loss, i.e., φ(x) = (1 + x)+, L = 1.

• for exponential loss, i.e., φ(x) = ex , L = e.

• for logistic loss, i.e., φ(x) = log(1 + ex),

L = e log2(e)/(1 + e) ≈ 2.43.
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Excess risk for Boosting

• Now we have bounded Rφ(f̂ )− Rφ(f ), but this is not yet the
excess risk.

• Recall that the excess risk of f̂ is defined as R(f̂ )− R(f ∗),

where f ∗ = argminf ∈F Rφ(f ).

• The following theorem in the next page provides a bound for
excess risk for Boosting.
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Excess risk for Boosting

Theorem

Let F = {
∑M

j=1 θjhj : ||θ||1 ≤ 1, hjs are weak classifiers} and φ is
an L-Lipschitz convex surrogate. Define f̂ = argminf ∈F Rφ,n(f ) and
ĥ = sign(f̂ ). Then,

R(ĥ)− R∗ ≤ 2c
(

inf
f ∈F

Rφ(f )− Rφ(f ∗)

)γ
+ 2c

(
8L

√
2 log(4M)

n

)γ

+ 2c

(
2L

√
log(2/δ)

2n

)γ
(7)

with probability 1− δ.
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Ending comments

• O(
√

1/n) upper bound of the excess risk is not tight.

• Under certaint conditions, it can be shown that the tight
upper bound of excess risk is in between O(1/n) and (

√
1/n).

• The proof of deriving the optimal bound is very technically
involved.

• The optimal upper bound of the excess risk depends heavily on
the choice of H or F .
• We do not cover how to calculate the complexity (i.e. VC

dimension or covering number) of a given H or F (e.g.
Boosting, RKHS, Deep neural networks,...), which is also very
technically involved.
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