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Convex relaxation of the ERM

® |n the previous sections, we have proved upper bounds on the
excess risk R(h®™) — R(h*) of the empirical risk minimizer

. -
h®™™ = argmin — Z]I(Y; # h(X;)).
her N
® However, the objective function is nonconvex so that the
optimization problem cannot be solved in general.

® To avoid the computational problem, the basic idea is to
minimize a convex upper bound of the classification error
function I(-). For the purpose, we shall also require that the

function class H be a convex set.



Convex set

® We say a set C is convex if for all x,y € C and X € [0, 1],
Ax+(1—=N)y e C.

Convex function

e \We say a function f : D — R is convex if it satisfies

FAXx+(1=X)y) < A (x)+(1—=Nf(y),Vx,y,e D, X € ]0,1].



Convex relaxation

The convex relaxation takes three steps.
(Step 1): Spinning
By the relaxation h(X) # Y < —h(X)Y >0, (Y € {-1,1})

we rewrite the objective function by

1 1
SO # V) = = 3 (04 Y)
i=1 i=1
where ¢1(z) =1(z > 0).
(Step 2): Soft classifier

A soft classifier is any measurable function f : X — [—1,1]. The
hard classifier associated to a soft classifier f is given by
h = sign(f).



Convex relaxation

(Step 2): Soft classifier (cont.)

Let 7 € RY be a convex set soft classifiers. Several popular choices
of F are:

e Linear functions: F := {a' x : a € A} for some convex set
A € RY. The associated hard classifier h splits R? into two

half spaces.

® Majority votes: given weak classifiers hy, ..., hy,
F= {02 () 1 A 2 0,304 = 1},



Convex relaxation

(Step 3): Convex surrogate

Given a convex set F of soft classifiers, we need to solve

i Z‘“ Y

However, while we are working with a convex constraint, the above
objective is still not convex: we need a surrogate for the

classification error.



Convex relaxation

Convex surrogate

A function ¢ : R — R is called a convex surrogate if it is a convex
non-decreasing function such that ¢(0) = 1 and ¢(z) > ¢1(z) for
all ze R.

The following is a list of convex surrogates of loss functions.
® Hinge loss: ¢(z) = max(1 + z,0).
® Exponential loss: ¢(z) = €”.

® |ogistic loss: ¢(z) = log(1 + exp(z)).



Convex relaxation

We may use a convex surrogate ¢ in place of ¢; and consider
minimizing the empirical ¢-risk defined by

Ruglf) = = 3 6(~ V(X))
i=1

It is the empirical counterpart of the ¢-risk Ry defined by

Ry(f) = E(o(=YF(X)))-



¢-risk minimization

In this section, we derive the relation between the ¢-risk Ry(f) of a
soft classifier f and the classification error R(h) = P(h(X) # Y) of
its associated hard classifier h = sign(f). Firstly let

fy = a;gﬂr&in E(o(—YF(X)))

where the infimum is taken over all measurable functions
f: X —R.



¢-risk minimization

e We will first show that if ¢(-) is differentiable, then
sign(f; (X)) > 0 is equivalent to 1(X) > 1/2 where
n(X) = P(Y = 1|X). Conditional on {X = x}, we have

E(o(=YF(X))IX = x) = n(x)(—F(x)) + (1 = n(x))o(f(x)).
® Now let H,(a) = n(x)p(—a) + (1 — n(x))¢() so that

f;(x) = argmin H,(a), and R} = mfin Ry(f) = min Hy ().
a€cR a€cR
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¢-risk minization

® Since ¢ is differentiable, setting the derivative of H, (a) to
zero gives f(x) = &, where
H,(@) = —n(x)¢'(=a&) + (1 = n(x))¢'(@) = 0, which gives

nx) )
1-n(x) ¢'(-a)
® Since ¢ is convex, its derivative ¢’ is non-decreasing. Then we
have n(x) > 1/2 <= a >0 <= sign(f;(x)) > 0.

® Since the equivalence relation holds for all x € X,

N(X) = 1/2 <= sign(£1(X)) = 0.
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Zhang’s Lemma

The following lemma shows that if the excess ¢-risk Ry(f) — R} of
a soft classifier f is small, then the excess-risk of its associated hard
classifier sign(f) is also small.

Zhang's Lemma:

Let ¢ : R — R, be a convex non-decreasing function such that
#(0) = 1. Define for any n € [0,1], 7(n) := infaecr Hy(ax). If there
exists ¢ > 0 and 7 € [0, 1] such that

[n— 51 < el ()", e [0,1],

then
R(sign(f)) — R* < 2c(Ry(f) — R})".
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Zhang’s Lemma

It is not hard to check the following values for the quantities
7(n), c and ~ for the three losses introduced above:

® Hinge loss: 7(n) =1 — |1 — 2n| with c =1/2 and 7 = 1.
e Exponential loss: 7(1) = 21/n(1 — 1) with ¢ = 1/4/2 and
v=1/2.

® Logistic loss: 7(n) = —nlogn — (1 — n) log(1 — n) with
c=1/v2and y=1/2.
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Bounding R,(f) — Ry(f)

Recall that

= argmin . Z]I

heH

By considering soft classifiers (i.e., whose output is in [—1, 1] rather
than in {0,1}) and convex surrogates of the loss function (e.g.,
hinge, exponential, logistic), we can write:

>

= argmin Ry (f) = argmin = Zqﬁ =Yif (X)),
feFr feF

and h= sign(f) will be used as the corresponding hard classifier.
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Bounding R,(f) — Ry(f)

Now, we want to bound the quantity Rd)(f) Rs(f), where

f = argmingc Ry(f). It can be derived by the several following
steps.

f = argmingez Ry n(f), thus
Rs(F) = Rs(F) + Ron(F) = Ron(F) + Ro.n(F) — Ry n(F)
+ Ro(F) = Ry(F)
< Rol(F) + RonlF) = RonlF) + Bs(F) = Ro(F) (1)
< Ry(F) + 2§gjpr|/i>¢n(f) Ry (f)|-
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Bounding R,(f) — Ry(f)

® Let us focus on E(supsc |§¢7n(f) — R4(f)|). Using the
symmetrization trick as before, we know it is upper-bounded
by 2R (¢ o F), where the Rademacher complexity is written as

Ro(6oF)=  sup suka(w Vif (X))

X1y Xn, Y1, Y fEF N
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Bounding R,(f) — Ry(f)

® One thing to notice is that ¢(0) = 1 for the loss functions we
consider, but in order to apply contraction inequality later, we

require ¢(0) = 0. Let us define ¢(-) = ¢(-) — 1. Clearly

¥(0) =0, and
Elsup |~ (6 (X)) ~ (- Vi)
= E(sup 2 Y- (6 (Vi) ~ E@-Yr ) )
€ i=1
< 2Ra( o F).
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Bounding R,(f) — Ry(f)

® The Rademacher complexity of v o F is still difficult to deal
with. Let us assume that ¢ is L-Lipschitz, (as a result, ¢ is
also L-Lipschitz), apply the contraction inequality, we have

Rn(p o F) < 2LR(F). (3)
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Bounding R,(f) — Ry(f)

® let Zi=(X,Yi),i=1,2,...,nand
g(Zl,..-,Z)—fup!Rm( ) = Ry(f)
€F

n

= sup |- (6= Vi (X)) — E(é(~ V(X))

i=1
® Since ¢(+) is monotonically increasing, it is not difficult to
verify that V24, ..., Z,, Z!,
lg(Z1,. . 2y Zn) — (L, ..., 2L, Zy)]

< o) —o(-1) < 2

n )

19



Bounding R,(f) — Ry(f)

® The last inequality holds since g is L-Lipschitz. By applying
the Bounded Difference Inequality, we have

P(I'sup [Rs,n(F) — Ro(F)| — E(sup [Ryn(F) — Rs(F)])| > 1)
feF feF

2t2
ST LR

® Set the RHS of above equation to 4, we get:

< 2exp(—

sup |Ry,n(f) — Ry(F)| < E(sup |Ry,n(f) — Ry(F)])

feF feF
log(2/4)
2n

(4)
+2L

20



Bounding R,(f) — Ry(f)

® Now, the above steps allow us to compute the bound of

A -

Ru(F) — Ry(7).
® That is, combining equations (1) to (4), we have

log(2/4)
2n

Ry(f) < Ry(F) +8LR,(F) + 2L

with probability 1 — 4.
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e We will specialize the above analysis to a particular learning
model: Boosting. The basic idea of Boosting is to convert a
set of weak learners (i.e., classifiers that do better than
random, but have high error probability) into a strong one by
using the weighted average of weak learners’ opinions.

® More precisely, we consider the following function class

M
F = {Zgjhj(-) . ’9|1 <1,
Jj=1

hj: X —[-1,1],j € {1,..., M} are (weak) classifiers}
(5)
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® We want to compute the upper bound R ,(F) for this choice
of F.

Rn(F)= sup E (sup |1Za,~Y,~f(X,-)>

n
Z1,..sZn feF i—1

77777

M n
1
=— sup E| sup 0; Yioihi(X;
S5 (MJE;JE,; (X))

® |t turns out that (HW)

2log(4M
R,(F) < 2084,
® Thus for Boosting,
Ry(f) < Ry(F) +8L 2'°g,S4M) +2L 'Oggi/é)

with probability 1 — 6. 23



To get some ideas of what values of Lipschitz constant L usually
takes, consider the following examples:

e for hinge loss, i.e., ¢(x) = (1 +X)+, L=1.

e for exponential loss, i.e., ¢(x) = €*, L = e.

e for logistic loss, i.e., ¢(x) = Iog(l + %),
L=-elogy(e)/(1+e) ~ 2.43.
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Excess risk for Boosting

* Now we have bounded Ry(f) — R4(f), but this is not yet the
excess risk.

e Recall that the excess risk of 7 is defined as R(f) — R(f*),
where f* = argminsc r Ry(f).

® The following theorem in the next page provides a bound for

excess risk for Boosting.
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Excess risk for Boosting

Theorem

Let F = {ZM 0jhj : |10|]1 < 1, hjs are weak classifiers} and ¢ is
an L-Lipschitz convex surrogate. Define f = argmin;_» Ry n(f) and
h = sign(). Then,

R(h) — R* < 2¢ (figff Ry(F) — Mf*))V +2¢ <8L 2'°€,(74’V’)>

+2c <2L 'Oggi/ ‘”)

with probability 1 — 4.

(7)
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Ending comments

° O(M) upper bound of the excess risk is not tight.

® Under certaint conditions, it can be shown that the tight
upper bound of excess risk is in between O(1/n) and (1/1/n).

® The proof of deriving the optimal bound is very technically
involved.

® The optimal upper bound of the excess risk depends heavily on

the choice of H or F.

® We do not cover how to calculate the complexity (i.e. VC
dimension or covering number) of a given H or F (e.g.
Boosting, RKHS, Deep neural networks,...), which is also very

technically involved.
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