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Review of Empirical Risk Minimization for classification

• In the previous lectures we have focused on binary losses for
the classification problem and developed VC theory for it.

• In particular, we consider a classification function
h : X → {0, 1} and binary loss function todefine the risk

R(h) = P(h(X ) 6= Y ) = E[I(h(X ) 6= Y )].
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Review of Empirical Risk Minimization for classification

• In this section, we will consider a general loss function and a
general regression model where Y is not necessarily a binary
variable.
• Note that for the binary classification problem we used the

followings:
• Hoeffding’s inequality: it requires boundedness of the loss

functions.
• Bounded difference inequality: again it requires boundedness of

the loss functions.
• VC theory: it requires binary nature of the loss function.
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Review of Empirical Risk Minimization for classification

• There are many limitations of the VC theory.

• It would be hard to find the optimal classification. That is, the
empirical risk minimization optimization, i.e.,

min
h

1
n

n∑
i=1

I (h (Xi ) 6= Yi )

is a difficult optimization.

• This is not suited for regression.

• Indeed, classification problem is a subset of regression problem
as in regression the goal is to find E[Y | X ] for a general Y
(not necessarily binary).
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Empirical Risk Minimization for general losses

• In this section, we assume that Y ∈ [−1, 1] (this is not a
limiting assumption as all the results can be derived for any
bounded Y ) and we have a regression problem where
(X ,Y ) ∈ X × [−1, 1].

• Most of the results that we preset here are the analogous to
the results we had in binary classification.

• we will explain how to extend the techniques for the binary
loss to general losses.
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Empirical Risk Minimization for general losses

Loss functions

• In binary classification the loss function was 1(h(X ) 6= Y ).

• Here, we replace this loss function by `(Y , f (X )), where
f ∈ F , f : X → [−1, 1] is the regression functions.
• Examples of loss functions include

• `(a, b) = 1(a 6= b) ( this is the classification loss function).
• `(a, b) = |a− b|
• `(a, b) = (a− b)2

• `(a, b) = |a− b|p, p ≥ 1
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Empirical Risk Minimization for general losses

• We further assume that 0 ≤ `(a, b) ≤ 1.

• Risk: the risk is the expectation of the loss function, i.e.

R(f ) = EX ,Y [`(Y , f (X ))]

where the joint distribution is typically unknown and it must
be learned from data.

• Data: we observe a sequence (X1,Y1) , . . . , (Xn,Yn) of n
independent draws from a joint distribution PX ,Y , where
(X ,Y ) ∈ X × [−1, 1].

• We denote the data points by Dn = {(X1,Y1) , . . . , (Xn,Yn)} .
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Empirical Risk Minimization for general losses

• Empirical Risk: the empirical risk is defined as

R̂n(f ) =
1
n

n∑
i=1

` (Yi , f (Xi )) .

• The empirical risk minimizer denoted by f̂ erm (or f̂ ) is
defined as the minimizer of empirical risk, i.e.,

argmin
f ∈F

R̂n(f )
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Empirical Risk Minimization for general losses

• In order to control the risk of f̂ we shall compare its
performance with the following oracle:

f̄ ∈ argmin
f ∈F

R(f ).

• Note that this is an oracle as in order to find it one need to
have access to PXY and then optimize R(f ) (we only observe
the data Dn ).
• Since f̂ is the minimizer of the empirical risk minimizer, we

have that R̂n(f̂ ) ≤ R̂n(f̄ ), which leads to

R(f̂ ) ≤ R(f̂ )− R̂n(f̂ ) + R̂n(f̂ )− R̂n(f̄ ) + R̂n(f̄ )− R(f̄ ) + R(f̄ )

≤ R(f̄ ) + R(f̂ )− R̂n(f̂ ) + R̂n(f̄ )− R(f̄ )

≤ R(f̄ ) + 2 sup
f ∈F

∣∣∣R̂n(f )− R(f )
∣∣∣
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Empirical Risk Minimization for general looses

• Therefore, the quantity of interest that we need to bound is

sup
f ∈F

∣∣∣R̂n(f )− R(f )
∣∣∣ .

• Moreover, from the bounded difference inequality, we know
that since the loss function `(·,−) is bounded by
1, supf ∈F

∣∣∣R̂n(f )− R(f )
∣∣∣ has the bounded difference property

with ci = 1
n for i = 1, . . . , n.

• Hence, the bounded difference inequality establishes

P
[

sup
f ∈F

∣∣∣R̂n(f )− R(f )
∣∣∣− E

[
sup
f ∈F

∣∣∣R̂n(f )− R(f )
∣∣∣] ≥ t

]
≤ exp

(
−2t2∑

i c
2
i

)
= exp

(
−2nt2

)
.
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Empirical Risk Minimization for general losses

• In turn, we have

sup
f ∈F

∣∣∣R̂n(f )− R(f )
∣∣∣ ≤ E

[
sup
f ∈F

∣∣∣R̂n(f )− R(f )
∣∣∣]

+

√
log(1/δ)

2n
, w.p. 1− δ.

• As a result we only need to bound the expectation

E
[

sup
f ∈F

∣∣∣R̂n(f )− R(f )
∣∣∣] .
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Symmetrization and Rademacher Complexity

• Similar to the binary loss case, we first use symmetrization
technique and then introduce Rademacher random variables.

• Let Dn = {(X1,Y1) , . . . (Xn,Yn)} be the sample set and
define an independent sample (ghost sample) with the same
distribution denoted by D ′n = {(X ′1,Y ′1) , . . . (X ′n,Y

′
n)} ( for

each i , (X ′i ,Y
′
i ) is independent from Dn with the same

distribution as of (Xi ,Yi )).

• Also, let σi ∈ {−1,+1} be i.i.d. Rad
(1

2

)
random variables

independent of Dn and D ′n.
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Symmetrization and Rademacher Complexity

Then we have

E
[
supf ∈F

∣∣ 1
n

∑n
i=1 ` (Yi , f (Xi ))− E [` (Yi , f (Xi ))]

∣∣]
= E

[
supf ∈F

∣∣ 1
n

∑n
i=1 ` (Yi , f (Xi ))− E

[ 1
n

∑n
i=1 ` (Y ′i , f (X ′i )) | Dn

]∣∣]
= E

[
supf ∈F

∣∣E [ 1
n

∑n
i=1 ` (Yi , f (Xi ))− 1

n

∑n
i=1 ` (Y ′i , f (X ′i )) | Dn

]∣∣]
(a)

≤ E
[
supf ∈F E

[∣∣ 1
n

∑n
i=1 ` (Yi , f (Xi ))− 1

n

∑n
i=1 ` (Y ′i , f (X ′i ))

∣∣ | Dn

]]
≤ E

[
supf ∈F

∣∣ 1
n

∑n
i=1 ` (Yi , f (Xi ))− 1

n

∑n
i=1 ` (Y ′i , f (X ′i ))

∣∣]
(b)
= E

[
supf ∈F

∣∣ 1
n

∑n
i=1 σi (` (Yi , f (Xi ))− ` (Y ′i , f (X ′i )))

∣∣]
(c)

≤ 2E
[
supf ∈F

∣∣ 1
n

∑n
i=1 σi` (Yi , f (Xi ))

∣∣]
≤ 2 supDn

E
[
supf ∈F | 1

n

∑n
i=1 σi` (yi , f (xi ))

]]
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Symmetrization and Rademacher Complexity

where

• (a) follows from Jensen’s inequality with convex function
f (x) = |x |,
• (b) follows from the fact that (Xi ,Yi ) and (X ′i ,Y

′
i ) has the

same distributions,

• (c) follows from triangle inequality.
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Symmetrization and Rademacher Complexity

• Rademacher complexity of a class F of functions for a given
loss function `(·, ·) and samples Dn is defined as

Rn(` ◦ F) = sup
Dn

E

[
sup
f ∈F

∣∣∣∣∣1n
n∑

i=1

σi` (yi , f (xi ))

∣∣∣∣∣
]
.

• Therefore, we have

E

[
sup
f ∈F
| 1
n

n∑
i=1

` (Yi , f (Xi ))− E [` (Yi , f (Xi ))]

]]
≤ 2Rn(`◦F)

and we only require to bound the Rademacher complexity.
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Finite class of functions

• Suppose that the class of functions F is finite.

• We have the following bound:

Theorem
Assume that |F| is finite and that ` takes values in [0, 1]. Then, we
have

Rn(` ◦ F) ≤
√

2 log(2|F|)
n
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Finite class of functions

Proof

From the previous lecture, for B ⊆ Rn, we have that

Rn(B) = E

[
max
b∈B

∣∣∣∣∣1n
n∑

i=1

σibi

∣∣∣∣∣
]
≤ max

b∈B
|b|2

√
2 log(2|B|)

n

Here, we have

B =


 ` (y1, f (x1))

...
` (yn, f (xn))

 , f ∈ F


Since ` takes values in [0, 1], this implies B ⊆

{
b : |b|2 ≤

√
n
}
.

Plugging this bound in the above inequality completes the proof. �
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Covering numbers

• Recall that for the classification problem, we had F ⊂ {0, 1}X .
• We have seen that the cardinality of the set
{(f (x1) , . . . , f (xn)) , f ∈ F} plays an important role in
bounding the risk of f erm .

• However, this set might be uncountable and thus we need to
introduce a measure of the size of the set.

• To this end we will define covering numbers, which basically
plays the role of VC dimension in the classification.
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Covering numbers

Definition
Given a set of functions F and a pseudo metric d on F((F , d) is a
metric space) and ε > 0. An ε-net of (F , d) is a set V such that
for any f ∈ F , there exists g ∈ V such that d(f , g) ≤ ε. Moreover,
the covering numbers of (F , d) are defined by

N(F , d , ε) = inf{|V | : V is an ε -net }
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Covering numbers

• For instance, for the F shown in the above figure, the set of
points {1, 2, 3, 4, 5, 6} is a covering.
• However, the covering number is 5 as point 6 can be removed

from V and the resulting points are still a covering.
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Covering numbers

Definition
Given x = (x1, . . . , xn), the conditional Rademacher average of a
class of functions F is defined as

R̂x
n(F) = E

[
sup
f ∈F

∣∣∣∣∣1n
n∑

i=1

σi f (xi )

∣∣∣∣∣
]
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Covering numbers

• Note that when we apply the above result to learning theory at
the end of this section, we will take xi to be (xi , yi ) and F to
be ` ◦ F .
• We define the empirical l1 distance as

dx
1 (f , g) =

1
n

n∑
i=1

|f (xi )− g (xi )| .
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Covering numbers

Theorem
If 0 ≤ f ≤ 1 for all f ∈ F , then for any x = (x1, . . . , xn), we have

R̂x
n(F) ≤ inf

ε≥0

{
ε+

√
2 log (2N (F , dx

1 , ε))

n

}
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Proof

Fix x = (x1, . . . , xn) and ε > 0. Let V be a minimal ε-net of
(F , dx

1 ) . Thus, by definition we have that |V | = N (F , dx
1 , ε) . For

any f ∈ F , define f ◦ ∈ V such that dz
1 (f , f ◦) ≤ ε.
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Proof

We have that

R̂x
n(F) = E

[
sup
f ∈F

∣∣∣∣∣1n
n∑

i=1

σi f (xi )

∣∣∣∣∣
]

≤ E

[
sup
f ∈F
| 1
n

n∑
i=1

σi (f (xi )− f ◦ (xi ))

]]

+ E

[
sup
f ∈F

∣∣∣∣∣1n
n∑

i=1

σi f
0 (xi )

∣∣∣∣∣
]

≤ ε+ E

[
max
f ∈V
| 1
n

n∑
i=1

σi f (xi )

]]

≤ ε+

√
2 log(2|V |)

n

= ε+

√
2 log (2N (F , dx

1 , ε))
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Proof

Since the previous bound holds for any ε, we can take the infimum
over all ε ≥ 0 to obtain

R̂x
n(F) ≤ inf

ε≥0

{
ε+

√
2 log (2N (F , dx

1 , ε))

n

}

The previous bound clearly establishes a trade-off because as ε
decreases N (F , dx

1 , ε) increases. �

26



Computing covering numbers

For any p ≥ 1, define

dx
p (f , g) =

(
1
n

n∑
i=1

|f (xi )− g (xi )|p
) 1

p

,

and for p =∞, define

dx
∞(f , g) = max

i
|f (xi )− g (xi )| .
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Computing covering numbers

• Using the previous theorem, in order to bound Rx
n we need to

bound the covering number with dx
1 norm.

• We will show that it is sufficient to bound the covering
number for the infinity norm.

• In order to show this, we will compare the covering number of

the norms dx
p (f , g) =

( 1
n

∑n
t=1 |f (xi )− g (xi )|p

) 1
p for p ≥ 1

and conclude that a bound on N (F , dx
∞, ε) implies a bound

on N
(
F , dx

p , ε
)
for any p ≥ 1.
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Computing covering numbers

Proposition
For any 1 ≤ p ≤ q and ε > 0, we have that

N
(
F , dx

p , ε
)
≤ N

(
F , dx

q , ε
)

Proof.
This is because dx

p (f ) ≤ dx
q (f ) for any p ≤ q (from HW).

• Using this propositions we only need to bound N (F , dx
∞, ε).
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Computing covering numbers

Example

• Let the function class be
F =

{
f (x) = 〈f , x〉, f ∈ Bd

∞, x ∈ Bd
1
}
, where

Bd
p =

{
x ∈ Rd : |x |p ≤ 1

}
and |x |p = (

∑d
i=1 |xi |p)1/p.

• Note that |f (x)| ≤ 1 (HW).

• It can be shown that

N(F , dx
1 , ε) ≤ c/εd

for a certain constant c > 0 (HW).
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Computing covering numbers

Example (continue)

• Hence, we have

R̂x
n(F) ≤ inf

ε≥0

{
ε+

√
2 log (c/εd)

n

}
.

• Optimizing over all choices of ε gives

ε∗ = c

√
d log(n)

n
⇒ R̂x

n(F) ≤ c

√
d log(n)

n
.
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Chaining: A techniuqe to derive a tighter upper bound

Theorem
Assume that |f | ≤ 1 for all f ∈ F . Then

R̂x
n(F) ≤ inf

ε>0

{
4ε+

12√
n

∫ 1

ε

√
log (N (F , dx

2 , t))dt

}
(Note that the integrand decays with t.)
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Chaining: A techniuqe to derive a tighter upper bound

• Let the function class be
F =

{
f (x) = 〈f , x〉, f ∈ Bd

2 , x ∈ Bd
2
}
.

• It can be shown (HW) that

N (F , dx
2 , ε) ≤ c/εd .

• Hence, we have

Rx
n(F) ≤ inf

ε>0

{
4ε+

12√
n

∫ 1

ε

√
log
(

(c ′/t)d
)
dt

}
.

• Since
∫ 1
0

√
log(c/t)dt = c̄ is finite, we then have

R̂x
n(F) ≤ 12c̄

√
d/n.

• Using chaining, we’ve been able to remove the log factor!
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Back to Learning

• Recall that we want to bound

Rn(` ◦ F) = sup
(x1,y1),...,(xn,yn)

E

[
sup
f ∈F

∣∣∣∣∣1n
n∑

i=1

σi` (yi , f (xi ))

∣∣∣∣∣
]
.

• We consider R̂x
n (Φ ◦F) = E

[
supf ∈F

∣∣ 1
n

∑n
t=1 σiΦ ◦ f (xi )

∣∣] for
some L -Lipschitz function Φ, that is |Φ(a)−Φ(b)| ≤ L|a− b|
for all a, b ∈ [−1, 1]. We have the following lemma.
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Back to Learning

Theorem (Contraction Inequality)
Let Φ be L -Lipschitz and such that Φ(0) = 0, then

R̂x
n (Φ ◦ F) ≤ 2L · Rx

n(F)

• As a final remark, note that requiring the loss function to be
Lipschitz prohibits the use of R -valued loss functions, for
example `(Y , ·) = (Y − ·)2.

• Examples of Lipschitz losses are the logistic loss, hinge loss
and absolute loss.
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