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Review of Empirical Risk Minimization for classification

® |n the previous lectures we have focused on binary losses for
the classification problem and developed VC theory for it.

® |n particular, we consider a classification function
h: X — {0,1} and binary loss function todefine the risk

R(h) = B(h(X) # ) = E[I(h(X) # Y)].



Review of Empirical Risk Minimization for classification

® |n this section, we will consider a general loss function and a
general regression model where Y is not necessarily a binary
variable.

e Note that for the binary classification problem we used the
followings:

® Hoeffding's inequality: it requires boundedness of the loss
functions.

® Bounded difference inequality: again it requires boundedness of
the loss functions.

® V/C theory: it requires binary nature of the loss function.



Review of Empirical Risk Minimization for classification

® There are many limitations of the VC theory.

® |t would be hard to find the optimal classification. That is, the
empirical risk minimization optimization, i.e.,

is a difficult optimization.
® This is not suited for regression.

® |ndeed, classification problem is a subset of regression problem
as in regression the goal is to find E[Y | X] for a general Y
(not necessarily binary).



Empirical Risk Minimization for general losses

® In this section, we assume that Y € [—1, 1] (this is not a
limiting assumption as all the results can be derived for any
bounded Y ) and we have a regression problem where
(X,Y)e X x[-1,1].

® Most of the results that we preset here are the analogous to

the results we had in binary classification.

e we will explain how to extend the techniques for the binary

loss to general losses.



Empirical Risk Minimization for general losses

Loss functions

® In binary classification the loss function was ¥(h(X) # Y).
® Here, we replace this loss function by ¢(Y, f(X)), where
feF, f: X —[—1,1] is the regression functions.

e Examples of loss functions include
¢(a, b) = W¥(a # b) ( this is the classification loss function).

® /(a,b) =|a— b
® /(a,b) = (a— b)?
® /(a,b)=|a—blP,p>1



Empirical Risk Minimization for general losses

e We further assume that 0 < ¢(a, b) < 1.

® Risk: the risk is the expectation of the loss function, i.e.
R(f) = Ex,v[¢(Y, f(X))]
where the joint distribution is typically unknown and it must

be learned from data.

® Data: we observe a sequence (X1, Y1),...,(Xn, Yn) of n

independent draws from a joint distribution Px y, where
(X,Y)e X x[-1,1].

® \We denote the data points by D, = {(X1, Y1),...,(Xn, Ya)}.



Empirical Risk Minimization for general losses

® Empirical Risk: the empirical risk is defined as
A 1«

Ra(f) = =D L(Yi.f(X).
i=1

e The empirical risk minimizer denoted by o™ (or f ) is
defined as the minimizer of empirical risk, i.e.,

argminR,(f)
feF



Empirical Risk Minimization for general losses

® In order to control the risk of  we shall compare its

performance with the following oracle:
f € argminR(f).
feF

® Note that this is an oracle as in order to find it one need to
have access to Pxy and then optimize R(f) (we only observe
the data D, ).

e Since f is the minimizer of the empirical risk minimizer, we
have that R,(f) < R,(), which leads to

R(f) < R(F) = Ra(f) + Ru(F) - /i’ (F) + Ra(F) = R(F) + R(F)
R(F) + R(F) = Ra(F) + Ra(F) — R(F)
) -

< R(F) + 2 sup |Ry(f) — R(f)
feF



Empirical Risk Minimization for general looses

e Therefore, the quantity of interest that we need to bound is

Ra(f) — R(f)‘.

sup
feF

e Moreover, from the bounded difference inequality, we know

that since the loss function ¢(-, —) is bounded by
Rn(F) — R(f)‘ has the bounded difference property

with ¢; = % fori=1,...,n.
® Hence, the bounded difference inequality establishes

() — R(f)” > t]
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Empirical Risk Minimization for general losses

® |n turn, we have

el = RO| <2 g

® As a result we only need to bound the expectation

?|
feF

(1) - R
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Symmetrization and Rademacher Complexity

e Similar to the binary loss case, we first use symmetrization
technique and then introduce Rademacher random variables.

o Let D, = {(X1, Y1),...(Xn, Yn)} be the sample set and
define an independent sample (ghost sample) with the same
distribution denoted by D, = {(X{, Y{),... (X}, Y})} ( for
each i, (X!, Y7) is independent from D, with the same
distribution as of (X, Y})).

® Also, let o; € {—1,+1} be i.i.d. Rad (1) random variables
independent of D, and D,.
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Symmetrization and Rademacher Complexity

Then we have

E [Supfe}‘ }% Z?:lg(yiv f(X)) E [f Yi, f )]H

:E[S“Pfef}%z:?:lg(yivf(x)) E[HZX 1€(Y/ }H
(Z)E [suprer [E [ 0g €(Yi £ (X)) — 5 i 0V f Do) |]
§E[SupfefEH%Zlef(yi,f(xi))—%27:15(\” \ | D]

< E [supser |} S0y £ (Vi F (X)) = 300 (Y] F (X >>H
% E [suprer |1 320y o (€(Yi, F (X)) — £(Y £ (X))
< 2E [supser |2 300 0il (Y5, £ (X0))|]

< 2supp E [SUPfef | %27:1 ail (yi, f (Xi))H
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Symmetrization and Rademacher Complexity

where

® (a) follows from Jensen's inequality with convex function
f(x) = [xl,
® (b) follows from the fact that (X, Y;) and (X!, Y7) has the

same distributions,

® (c) follows from triangle inequality.
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Symmetrization and Rademacher Complexity

e Rademacher complexity of a class F of functions for a given
loss function £(-,-) and samples D, is defined as

n

oil (yi, f(X;))u :

Rn(loF)=supE [sup |—
D fer |
® Therefore, we have
sup | = Zf (Vi F (X)) —=E[(Yi, F(X)]| | < 2Ra(LoF)
feF

and we only require to bound the Rademacher complexity.
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Finite class of functions

® Suppose that the class of functions F is finite.

® We have the following bound:

Theorem
Assume that | F| is finite and that { takes values in [0,1]. Then, we
have
2log(2
Ru(lo F) < og(n]}")
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Finite class of functions

Proof

From the previous lecture, for B C R", we have that

7§O-II
n

Rn(B) =

max

2log(2[B])
beB n

< max|blz
beB

Here, we have
C(y1, f (xa))
B= : ,feF
€ (yn, f (xn))

Since ¢ takes values in [0, 1], this implies B C {b: |b|> < \/n}.
Plugging this bound in the above inequality completes the proof. [J
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Covering numbers

® Recall that for the classification problem, we had F C {0,1}%.

® \We have seen that the cardinality of the set
{(f(x1),...,f(xn)),f € F} plays an important role in
bounding the risk of f&™ .

® However, this set might be uncountable and thus we need to
introduce a measure of the size of the set.

® To this end we will define covering numbers, which basically
plays the role of VC dimension in the classification.

18



Covering numbers

Definition
Given a set of functions F and a pseudo metric d on F((F,d) is a

metric space) and € > 0. An e-net of (F, d) is a set V such that
for any f € F, there exists g € V such that d(f, g) < . Moreover,
the covering numbers of (F, d) are defined by

N(F,d,e) =inf{|V|: Visan ¢ -net }

19



Covering numbers

® For instance, for the F shown in the above figure, the set of
points {1,2,3,4,5,6} is a covering.
® However, the covering number is 5 as point 6 can be removed

from V and the resulting points are still a covering.
20



Covering numbers

Definition
Given x = (x1,...,Xp), the conditional Rademacher average of a

|

class of functions F is defined as

g oif XI

RX(F) = [sup
feFr
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Covering numbers

® Note that when we apply the above result to learning theory at
the end of this section, we will take x; to be (x;, y;) and F to
be { o F.

e \We define the empirical /; distance as

di(f.g) = ny xi) — g (xi)| .-
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Covering numbers

Theorem
If0 < f <1forall f € F, then for any x = (x1,...,%n), we have

RY(F) < inf {5 + \/2log(2N(f’ dlx’g))}

>0 n
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Fix x = (x1,...,xn) and € > 0. Let V be a minimal e-net of
(F,dy). Thus, by definition we have that |V| = N (F, dy,¢). For
any f € F, define f° € V such that df (f,f°) <e.
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We have that

1 n
+E [sup Za,fo (xi)
feFr i—1
< E if (X
e+ max | ~ | = ZO’ X ”

n 25



Since the previous bound holds for any &, we can take the infimum
over all € > 0 to obtain

Ry(F) < inf {a—i- NELIELI St ’5”}

n

The previous bound clearly establishes a trade-off because as ¢
decreases N (F, df, €) increases. [J
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Computing covering numbers

For any p > 1, define

dX(f.g) = (Z|fx, ,|>,
and for p = oo, define

do(f, ) = max|[f (x) — g ()]

27



Computing covering numbers

® Using the previous theorem, in order to bound R we need to
bound the covering number with df norm.

® We will show that it is sufficient to bound the covering
number for the infinity norm.

® |n order to show this, we will compare the covering number of

1

the norms dX(f,g) = (+ Yty If (xi) — g (xi)|P)? for p > 1
and conclude that a bound on N (F,d%,¢) implies a bound
on N (]:, d;j,e) for any p > 1.
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Computing covering numbers

Proposition
Forany 1 < p < q and e > 0, we have that

N(]—', dg,s) < N(}",d;,a)

Proof.
This is because d;(f) < d;(f) for any p < g (from HW). O

® Using this propositions we only need to bound N (F, d% ,¢).

s Yoo
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Computing covering numbers

Example

® |et the function class be
JT {f(x) = (f,x),f € BL,x € B}, where
— xR ey < 1) and I = (5 b,
® Note that |[f(x)| <1 (HW).

® |t can be shown that
N(F,dy,€) < c/ef

for a certain constant ¢ > 0 (HW).
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Computing covering numbers

Example (continue)

® Hence, we have

R(F) < inf {s 1y 2losle/e?) } .

e>0 n

e Optimizing over all choices of ¢ gives

. dlog(n) < dlog(n).

n n

= RY(F)<c

31



Chaining: A techniuge to derive a tighter upper bound

Theorem
Assume that |f| < 1 for all f € F. Then

RA(F) < inf {45—1—/ \/log (N (F. d5. ))dt}

(Note that the integrand decays with t.)
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Chaining: A techniuge to derive a tighter upper bound

® Let the function class be
F={f(x)=(f,x),f € BY,xe Bf}.
It can be shown (HW) that

N (F,d5,e) < c/e.

Hence, we have

Ry(F) < inf {45+/ JJlog ((<//1) ) }

Since fol \/log(c/t)dt = ¢ is finite, we then have
RX(F) < 12&\/d/n.

Using chaining, we've been able to remove the log factor!
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Back to Learning

® Recall that we want to bound

n

IS ity f(x,-))u .

n«
i=1

sup
feF

Rn(loF) = sup E
(Xl,y1)7-~~7(Xn7yn)

® We consider RX(® o F) = E [supser |1 30, 0i® o f (x;)]] for
some L -Lipschitz function ®, that is |®(a) — ®(b)| < L|a — b
for all a, b € [-1,1]. We have the following lemma.
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Back to Learning

Theorem (Contraction Inequality)
Let ® be L -Lipschitz and such that ®(0) = 0, then

RX(® o F) < 2L-RX(F)

® As a final remark, note that requiring the loss function to be
Lipschitz prohibits the use of R -valued loss functions, for
example £(Y,-) = (Y — )2

e Examples of Lipschitz losses are the logistic loss, hinge loss
and absolute loss.
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