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Bounded Differences Inequality

Definition (Bounded Differences Condition)
Let g : X — R and constants ¢; be given. Then g is said to satisfy

the bounded differences condition (with constants ¢; ) if

sup ‘g(xl,...,xn)—g(xl,...,x,{,...,x,,)‘ <

’
XLyeesXn, X;

for every i.



Bounded Differences Inequality

Theorem (Bounded Differences Inequality)
Suppose that X1, ..., X, are indepent random variables. If

g : X — R satisfies the bounded differences condition, then

2t2
Pl g0 X~ Blg (e X0) [ ] < 20 (- 575
i~



Empirical measure

® The upper bounds proved so far are meaningful only for a
finite dictionary H, because if M = |H]| is infinite all of the
bounds we have will simply be infinity.

® To extend previous results to the infinite case, we essentially
need the condition that only a finite number of elements in an
infinite dictionary # really matter.

® This is the objective of the VapnikChervonenkis (VC) theory
which was developed in 1971 .



Empirical measure

® Recall that the key quantity we need to control is

2 sup (/%n(h) - R(h)) .
heH
® |nstead of the union bound which would not work in the
infinite case, we seek some bound that potentially depends on
n and the complexity of the set .
® One approach is to consider some metric structure on A and
hope that if two elements in H are close, then the quantity

evaluated at these two elements are also close.

® On the other hand, the VC theory is more combinatorial and
does not involve any metric space structure as we will see.



Empirical measure

e By definition

n

o Let Z=(X,Y) and Z; = (X}, Y;), and let A denote the class
of measurable sets in the sample space X x {0,1}.

® For a classifier h, define A, € A by

{Zi € A} = {h (X)) # VY;}



Empirical measure

® Moreover, define measures yu, and p on A by
1 n
Hn(A) =~ ;H(Zf € A) and u(A) =P[Z; € Al

for Ae A.
e \With this notation, we have proved that

sup Ry(h) — R(K) = sup |1s(4) — (a)] < /B
heH AcA n



Empirical measure

® Since this is not accessible in the infinite case, we will derive
an upper bound by use of bounded differences inequality.

® |f we change the value of only one z; in the function

710020 SUP |1n(A) = u(A)]

the value of the function will differ by at most 1/n.

® Hence it satisfies the bounded difference assumption with
ci=1/nforall1<i<n.

e Applying the bounded difference inequality, we get that

log(2/0)
sup 1)~ A) s () — (A < |/ E).

with probability at least 1 — §.



Symmetrization and Rademacher complexity

® We will drive an upper bound of E[supsc 4 |1n(A) — n(A)]],
and symmetrization is a frequently used technique for this
purpose.

o let D={2Z,...,Z,} be the sample set.

® To employ symmetrization, we take another independent copy
of the sample set D' = {Z],...,Z]}.

® This sample only exists for the proof, so it is sometimes
referred to as a ghost sample.



Symmetrization and Rademacher complexity

® Then we have

wA) =P[Z € Al
izn:H(Z{EA)
iznjﬂ(z,’eA) |D]

=E [11(A) | D]

where ) := 130 1(Z] € A).

=E

=E
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Symmetrization and Rademacher complexity

Thus by Jensen's inequality,

B |sup | o)~ ()| = | sup [i(4) ~ E [1(4) | 7]
AcA :AGA

<E |sup E [|un(A) = p1p(A)] ID]]
LAcA

<& | sup o) - (A
:AeA
1Z(}I(z,- eA)—H(Z,-’eA))|

n <
i=1

=FE |sup
_AEA
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Symmetrization and Rademacher complexity

® Since D’ has the same distribution of D, by symmetry
I(Z; € A) —I(Z! € A) has the same distribution as
oi (I(Z; € A) —1(Z € A)) where o1, ...,0, are i.id.
Rad (%) i.e.

IP’[Ui:l]:]P’[UiZ—l]ZE

and o} 's are taken to be independent of both samples.
® Therefore,

E[sup | 11n(A) — p(A)]]

§ i(I(Z e A)—-1(Z €A
< 2E E 1(Z € A)




Symmetrization and Rademacher complexity

® Using symmetrization we have bounded
E [supaca |11n(A) — 1(A)|] . by a much nicer quantity.

® Yet we still need an upper bound of the last quantity that
depends only on the structure of A but not on the random
sample {Z;}.

® This is achieved by taking the supremum over all
zie X x{0,1} = Y.
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Symmetrization and Rademacher complexity

Definition
The Rademacher complexity of a family of sets A in a space ) is

defined to be the quantity

HZU]I zie A)

The Rademacher complexity of a set B C R" is defined to be

Z1y00yZn €Y AcA

Rn(A) = sup [sup

e We conclude from (*) and the definition that

E[jgi |1n(A) = p(A)]] < 2Rn(A)-
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Symmetrization and Rademacher complexity

® |n the definition of Rademacher complexity of a set, the
quantity ]% 27:1 a,-b,-| measures how well a vector b € B

correlates with a random sign pattern {o;}.

® The more complex B is, the better some vector in B can

replicate a sign pattern.

® In particular, if B is the full hypercube [—1,1]", then
Rn(B) = 1.

® However, if B C [—1,1]" contains only k -sparse vectors, then
Rn(B) = k/n.

® Hence R,(B) is indeed a measurement of the complexity of
the set B.
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Symmetrization and Rademacher complexity

® The set of vectors to our interest in the definition of
Rademacher complexity of A is

T(z) = {(11(21 €A),....I(z eA))T,AeA}.

® Thus the key quantity here is the cardinality of T(z), i.e., the
number of sign patterns these vectors can replicate as A
ranges over A.

e Although the cardinality of .4 may be infinite, the cardinality
of T(z) is bounded by 2".
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e We will complete the analysis of the performance of the
empirical risk minimizer under a constraint on the VC
dimension of the family of classifiers.

® To that end, we will see how to control Rademacher

complexities using shatter coefficients.

e Moreover, we will see how the problem of controlling uniform
deviations of the empirical measure p,, from the true measure
1 as done by Vapnik and Chervonenkis relates to our original
classification problem.
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® Recall from the previous slide that we are interested in sets of
the form

T(z) ={{(znn € A),....,I(za € A)),Ac A} ,z=(z1,...,2p) - - (%)

® In particular, the cardinality of T(z), i.e., the number of binary
patterns these vectors can replicate as A ranges over A, will
be of critical importance, as it will arise when controlling the
Rademacher complexity.

e Although the cardinality of .4 may be infinite, the cardinality
of T(z) is always at most 2".

® When it is of the size 2", we say that A shatters the set
71,..., 2. Formally, we have the following definition.
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Definition
A collection of sets A shatters the set of points {z1, 2, ..., 25}

card {([(z1 € A),....[(zn € A)),Ac A} =2"

® The sets of points {z1, 23, ..., z,} that we are interested are
realizations of the pairs Z; = (X1, Y1),...,Z, = (Xp, Y3) and
may, in principle take any value over the sample space.

e Therefore, we define the shatter coefficient to be the largest
cardinality that we may obtain.
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Definition
The shatter coefficients of a class of sets A is the sequence of
numbers {S4(n)},>;, where for any n >1

Sa(n) = sup card{(I(z1 € A),...,I(z, € A)),Ac A}

Z1,y-++yZn

and the suprema are taken over the whole sample space.
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® By definition, the n th shatter coefficient S4(n) is equal to 2"
if there exists a set {z1, z2, ..., z,} that A shatters.
® The largest of such sets is precisely the Vapnik-Chervonenkis
or VC dimension.
Definition
The Vapnik-Chervonenkis dimension, or VC -dimension of A is the
largest integer d such that S4(d) = 29. We write VC(A) = d.
If Sa(n) = 2" for all positive integers n, then VC(A) := co
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® |n other words, A shatters some set of points of cardinality d
but shatters no set of points of cardinality d + 1.

® |n particular, A also shatters no set of points of cardinality
d’ > d so that the VC dimension is well defined.

® |n the sequel, we will see that the VC dimension will play the
role similar to of cardinality, but on an exponential scale.

® For interesting classes A such that card(.A) = oo, we also may
have VC(A) < oo.
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® For example, assume that A is the class of half-lines,
A ={(—0o0,a],a € R} U{[a,0),a € R}, which is clearly
infinite.

® Then, we can clearly shatter a set of size 2 but we for three
points z1, 20, z3, € R, if for example z; < z» < z3, we cannot
create the pattern (0,1, 0) (see Figure 1 in the next slide).

® |ndeed, half lines can can only create patterns with zeros
followed by ones or with ones followed by zeros but not an
alternating pattern like (0,1, 0).
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Figure 1: If A = { halflines }, then any set of size n =2 is
shattered because we can create all 2" = 40/1 patterns (left); if
n = 3 the pattern (0,1,0) cannot be reconstructed:

Sa(3) =7 < 23 (right). Therefore, VC(A) = 2

24



The VC inequality

e \We have now introduced all the ingredients necessary to state
the main result of this section: the VC inequality.

Theorem (VC inequality)
For any family of sets A with VC dimension VC(.A) = d, it holds

2d log(2en/d
E sup [un(4) — p(A)] < 2/ 241081261/ d)
AcA n

® Note that this result holds even if A is infinite as long as its
VC dimension is finite.

® Moreover, observe that log(|.A|) has been replaced by a term
of order dlog(2en/d).

® To prove the VC inequality, we proceed in three steps:
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The VC inequality

1. Symmetrization, to bound the quantity of interest by the

Rademacher complexity:
E[sup | 1in(A) — pu(A)l] < 2Rn(A).
AcA

We have already done this step in the previous lecture.
2. Control of the Rademacher complexity using shatter coefficients.

We are going to show that

Ro(A) < 2log (28.4(n))

3. We are going to need the Sauer-Shelah lemma to bound the
shatter coefficients by the VC dimension. It will yield
en

sam < ()", d=ve()

Put together, these three steps yield the VC inequality.
26



STEP 2: CONTROL OF THE RADEMACHER COMPLEX-

ITY

® \We need the following Lemma whose proof is HW.

Lemma
For any B C R", such that |B| < oo :, it holds

Rn( ;ZUI i

max

2log(2/B])
beB n

] < max|blz
beB
where | - |2 denotes the Euclidean norm.
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STEP 2: CONTROL OF THE RADEMACHER COMPLEX-

ITY

e \We apply the above Lemma to our problem by observing that

Rn(A) = sup Rn(T(2)).

Z15-+5Zn

® |n particular, since T(z) C {0,1}", we have |b|o < /n for all
be T(z).

® Moreover, by definition of the shatter coefficients,
[ T(2)] < Saln).

® Together with the above lemma, it yields the desired inequality:

2log (25A(n)).

Rn(A) <

28



STEP 3: SAUER-SHELAH LEMMA

® \We need to use a lemma from combinatorics to relate the
shatter coefficients to the VC dimension.

® A priori, it is not clear from its definition that the VC
dimension may be at all useful to get better bounds.

® Recall that steps 1 and 2 put together yield the following
bound

2log (25.4(n))

Elsup | 1n(A) — n(A)]] < 2

® In particular, if S4(n) is exponential in n, the bound (***) is
not informative, i.e., it does not imply that the uniform

deviations go to zero as the sample size n goes to infinity.

29



STEP 3: SAUER-SHELAH LEMMA

e The VC inequality suggest that this is not the case as soon as
VC(A) < oo but it is not clear a priori.

¢ Indeed, it may be the case that S4(n) = 2" for n < d and
Sa(n) =2" —1 for n > d, which would imply that
VC(A) = d < oo but that the right-hand side in (***) is
larger than 2 for all n.

® |t turns our that this can never be the case: if the VC
dimension is finite, then the shatter coefficients are at most
polynomial in n, which is stated in the Sauer-Shelah lemma.
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STEP 3: SAUER-SHELAH LEMMA

Lemma (Sauer-Shelah)
If VC(A) = d, then Vn > 1,

&(n)gi(l)g(j’)"
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The VC inequality

To sum up everything, we have the following corollary.

Corollary (VC inequality)
For any family of sets A such that VC(A) = d and any § € (0,1),

it holds with probability at least 1 — ¢,

sup [1n(A) — ()] < 2/ 22 E2N/D) flg(2/0)
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Application to ERM

® The VC inequality provides an upper bound for
supac |1tn(A) — 1(A)] in terms of the VC dimension of the
class of sets A.

e This result translates directly to our quantity of interest:

%Qdﬂﬂwbdé%)+l%ma

n 2n

sup |R,(h) — R(h)
heH

where A = {A,: he€ H} and
An = {(x,y) € X x {0,1} : h(x) # y}.

® Unfortunately, the VC dimension of this class of subsets of
X x{0,1} is not very natural.

e Since, a classifier his a {0, 1} valued function, it is more
natural to consider the VC dimension of the family

A={{h=1}:heH}={A:3he H,h(:)=1(- € A)}. i



Application to ERM

Definition
We define the VC dimension VC(#) of H to be the VC dimension

of A.
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Application to ERM

® |t is not clear how VC(.A) relates to the quantity VC(.A).

® Fortunately, these two are actually equal as indicated in the
following lemma.

Lemma

Define the two families for sets: A = {Ap: he H} € X x{0,1}
where Ap = {(x,y) € X x {0,1} : h(x) # y} and
A={{h=1}:heH} c2¥ Then, Su(n) = S(n) forall n > 1.

It implies VC(A) = VC(A).
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Application to ERM

It yields the following corollary to the VC inequality.

Corollary
Let H be a family of classifiers with VVC dimension d. Then the

empirical risk classifier h®™ over H satisfies

R (™) < min R(h) + 4y 22oECen/) [los(2/0)

heH 2n

with probability 1 — 0.
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