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Bounded Differences Inequality

Definition (Bounded Differences Condition)
Let g : X → R and constants ci be given. Then g is said to satisfy
the bounded differences condition (with constants ci ) if

sup
x1,...,xn,x ′i

∣∣g (x1, . . . , xn)− g
(
x1, . . . , x

′
i , . . . , xn

)∣∣ ≤ ci

for every i .
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Bounded Differences Inequality

Theorem (Bounded Differences Inequality)
Suppose that X1, . . . ,Xn are indepent random variables. If
g : X → R satisfies the bounded differences condition, then

P
[
| g (X1, . . . ,Xn)− E [g (X1, . . . ,Xn) |> t] ≤ 2 exp

(
− 2t2∑

i c
2
i

)

3



Empirical measure

• The upper bounds proved so far are meaningful only for a
finite dictionary H, because if M = |H| is infinite all of the
bounds we have will simply be infinity.

• To extend previous results to the infinite case, we essentially
need the condition that only a finite number of elements in an
infinite dictionary H really matter.

• This is the objective of the VapnikChervonenkis (VC) theory
which was developed in 1971 .
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Empirical measure

• Recall that the key quantity we need to control is

2 sup
h∈H

(
R̂n(h)− R(h)

)
.

• Instead of the union bound which would not work in the
infinite case, we seek some bound that potentially depends on
n and the complexity of the set H.
• One approach is to consider some metric structure on H and

hope that if two elements in H are close, then the quantity
evaluated at these two elements are also close.

• On the other hand, the VC theory is more combinatorial and
does not involve any metric space structure as we will see.
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Empirical measure

• By definition

R̂n(h)− R(h) =
1
n

n∑
i=1

(I (h (Xi ) 6= Yi )− E [I (h (Xi ) 6= Yi )])

• Let Z = (X ,Y ) and Zi = (Xi ,Yi ), and let A denote the class
of measurable sets in the sample space X × {0, 1}.
• For a classifier h, define Ah ∈ A by

{Zi ∈ Ah} = {h (Xi ) 6= Yi}
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Empirical measure

• Moreover, define measures µn and µ on A by

µn(A) =
1
n

n∑
i=1

I (Zi ∈ A) and µ(A) = P [Zi ∈ A]

for A ∈ A.
• With this notation, we have proved that

sup
h∈H

R̂n(h)− R(h) = sup
A∈A
|µn(A)− µ(A)| ≤

√
log(2|A|/δ)

2n
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Empirical measure

• Since this is not accessible in the infinite case, we will derive
an upper bound by use of bounded differences inequality.
• If we change the value of only one zi in the function

z1, . . . , zn 7→ sup
A∈A
|µn(A)− µ(A)| ,

the value of the function will differ by at most 1/n.
• Hence it satisfies the bounded difference assumption with
ci = 1/n for all 1 ≤ i ≤ n.
• Applying the bounded difference inequality, we get that∣∣∣∣ sup

A∈A
|µn(A)− µ(A)| − E[ sup

A∈A
|µn(A)− µ(A)|]

∣∣∣∣ ≤
√

log(2/δ)

2n
.

with probability at least 1− δ.
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Symmetrization and Rademacher complexity

• We will drive an upper bound of E[supA∈A |µn(A)− µ(A)|],
and symmetrization is a frequently used technique for this
purpose.

• Let D = {Z1, . . . ,Zn} be the sample set.

• To employ symmetrization, we take another independent copy
of the sample set D′ = {Z ′1, . . . ,Z ′n} .
• This sample only exists for the proof, so it is sometimes

referred to as a ghost sample.
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Symmetrization and Rademacher complexity

• Then we have

µ(A) = P[Z ∈ A]

= E

[
1
n

n∑
i=1

I
(
Z ′i ∈ A

)]

= E

[
1
n

n∑
i=1

I
(
Z ′i ∈ A

)
| D

]
= E

[
µ′n(A) | D

]
where µ′n := 1

n

∑n
i=1 I (Z ′i ∈ A) .
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Symmetrization and Rademacher complexity

Thus by Jensen’s inequality,

E
[

sup
A∈A
| µn(A)− µ(A)|

]
= E

[
sup
A∈A

∣∣µn(A)− E
[
µ′n(A) | D

]∣∣]
≤ E

[
sup
A∈A

E
[∣∣µn(A)− µ′n(A)

∣∣ | D]]
≤ E

[
sup
A∈A

∣∣µn(A)− µ′n(A)
∣∣]

= E

[
sup
A∈A

∣∣∣∣∣1n
n∑

i=1

(
I (Zi ∈ A)− I

(
Z ′i ∈ A

))∣∣∣∣∣
]
.
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Symmetrization and Rademacher complexity

• Since D′ has the same distribution of D, by symmetry
I (Zi ∈ A)− I (Z ′i ∈ A) has the same distribution as
σi (I (Zi ∈ A)− I (Z ′i ∈ A)) where σ1, . . . , σn are i.i.d.
Rad

(1
2

)
, i.e.

P [σi = 1] = P [σi = −1] =
1
2

and σi ’s are taken to be independent of both samples.
• Therefore,

E[ sup
A∈A
| µn(A)− µ(A)|]

≤ E

[
sup
A∈A

∣∣∣∣∣1n
n∑

i=1

σi
(
I (Zi ∈ A)− I

(
Z ′i ∈ A

))∣∣∣∣∣
]

≤ 2E

[
sup
A∈A

∣∣∣∣∣1n
n∑

i=1

σi I (Zi ∈ A)

∣∣∣∣∣
]
· · · (∗)
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Symmetrization and Rademacher complexity

• Using symmetrization we have bounded
E [supA∈A |µn(A)− µ(A)|] . by a much nicer quantity.

• Yet we still need an upper bound of the last quantity that
depends only on the structure of A but not on the random
sample {Zi}.
• This is achieved by taking the supremum over all
zi ∈ X × {0, 1} =: Y.
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Symmetrization and Rademacher complexity

Definition
The Rademacher complexity of a family of sets A in a space Y is
defined to be the quantity

Rn(A) = sup
z1,...,z̄n∈Y

E

[
sup
A∈A

∣∣∣∣∣1n
n∑

i=1

σi I (zi ∈ A)

∣∣∣∣∣
]
.

The Rademacher complexity of a set B ⊂ Rn is defined to be

Rn(B) = E

[
sup
b∈B

∣∣∣∣∣1n
n∑

i=1

σibi

∣∣∣∣∣
]
.

• We conclude from (*) and the definition that

E[ sup
A∈A
|µn(A)− µ(A)|] ≤ 2Rn(A).
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Symmetrization and Rademacher complexity

• In the definition of Rademacher complexity of a set, the
quantity

∣∣ 1
n

∑n
i=1 σibi

∣∣ measures how well a vector b ∈ B

correlates with a random sign pattern {σi}.
• The more complex B is, the better some vector in B can

replicate a sign pattern.

• In particular, if B is the full hypercube [−1, 1]n, then
Rn(B) = 1.

• However, if B ⊂ [−1, 1]n contains only k -sparse vectors, then
Rn(B) = k/n.

• Hence Rn(B) is indeed a measurement of the complexity of
the set B .
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Symmetrization and Rademacher complexity

• The set of vectors to our interest in the definition of
Rademacher complexity of A is

T (z) :=
{

(I (z1 ∈ A) , . . . , I (zn ∈ A))T ,A ∈ A
}
.

• Thus the key quantity here is the cardinality of T (z), i.e., the
number of sign patterns these vectors can replicate as A
ranges over A.
• Although the cardinality of A may be infinite, the cardinality

of T (z) is bounded by 2n.
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Shattering

• We will complete the analysis of the performance of the
empirical risk minimizer under a constraint on the VC
dimension of the family of classifiers.

• To that end, we will see how to control Rademacher
complexities using shatter coefficients.

• Moreover, we will see how the problem of controlling uniform
deviations of the empirical measure µn from the true measure
µ as done by Vapnik and Chervonenkis relates to our original
classification problem.
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Shattering

• Recall from the previous slide that we are interested in sets of
the form

T (z) := {(I (z1 ∈ A) , . . . , I (zn ∈ A)) ,A ∈ A} , z = (z1, . . . , zn) · · · (∗∗)

• In particular, the cardinality of T (z), i.e., the number of binary
patterns these vectors can replicate as A ranges over A, will
be of critical importance, as it will arise when controlling the
Rademacher complexity.

• Although the cardinality of A may be infinite, the cardinality
of T (z) is always at most 2n.

• When it is of the size 2n, we say that A shatters the set
z1, . . . , zn. Formally, we have the following definition.
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Shattering

Definition
A collection of sets A shatters the set of points {z1, z2, . . . , zn}

card {(I (z1 ∈ A) , . . . , I (zn ∈ A)) ,A ∈ A} = 2n

• The sets of points {z1, z2, . . . , zn} that we are interested are
realizations of the pairs Z1 = (X1,Y1) , . . . ,Zn = (Xn,Yn) and
may, in principle take any value over the sample space.

• Therefore, we define the shatter coefficient to be the largest
cardinality that we may obtain.

19



Shattering

Definition
The shatter coefficients of a class of sets A is the sequence of
numbers {SA(n)}n≥1, where for any n ≥ 1

SA(n) = sup
z1,...,zn

card {(I (z1 ∈ A) , . . . , I (zn ∈ A)) ,A ∈ A}

and the suprema are taken over the whole sample space.
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Shattering

• By definition, the n th shatter coefficient SA(n) is equal to 2n

if there exists a set {z1, z2, . . . , zn} that A shatters.

• The largest of such sets is precisely the Vapnik-Chervonenkis
or VC dimension.

Definition
The Vapnik-Chervonenkis dimension, or VC -dimension of A is the
largest integer d such that SA(d) = 2d . We write VC(A) = d .
If SA(n) = 2n for all positive integers n, then VC(A) :=∞
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Shattering

• In other words, A shatters some set of points of cardinality d

but shatters no set of points of cardinality d + 1.

• In particular, A also shatters no set of points of cardinality
d ′ ≥ d so that the VC dimension is well defined.

• In the sequel, we will see that the VC dimension will play the
role similar to of cardinality, but on an exponential scale.

• For interesting classes A such that card(A) =∞, we also may
have VC(A) <∞.
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Shattering

• For example, assume that A is the class of half-lines,
A = {(−∞, a], a ∈ R} ∪ {[a,∞), a ∈ R}, which is clearly
infinite.

• Then, we can clearly shatter a set of size 2 but we for three
points z1, z2, z3,∈ R, if for example z1 < z2 < z3, we cannot
create the pattern (0, 1, 0) (see Figure 1 in the next slide).

• Indeed, half lines can can only create patterns with zeros
followed by ones or with ones followed by zeros but not an
alternating pattern like (0, 1, 0).
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Shattering

Figure 1 : If A = { halflines }, then any set of size n = 2 is
shattered because we can create all 2n = 40/1 patterns (left); if
n = 3 the pattern (0, 1, 0) cannot be reconstructed:
SA(3) = 7 < 23 (right). Therefore, VC(A) = 2
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The VC inequality

• We have now introduced all the ingredients necessary to state
the main result of this section: the VC inequality.

Theorem (VC inequality)
For any family of sets A with VC dimension VC(A) = d , it holds

E sup
A∈A
|µn(A)− µ(A)| ≤ 2

√
2d log(2en/d)

n

• Note that this result holds even if A is infinite as long as its
VC dimension is finite.
• Moreover, observe that log(|A|) has been replaced by a term

of order d log(2en/d).
• To prove the VC inequality, we proceed in three steps:
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The VC inequality

1. Symmetrization, to bound the quantity of interest by the
Rademacher complexity:

E[ sup
A∈A
| µn(A)− µ(A)|] ≤ 2Rn(A).

We have already done this step in the previous lecture.
2. Control of the Rademacher complexity using shatter coefficients.
We are going to show that

Rn(A) ≤
√

2 log (2SA(n))

n

3. We are going to need the Sauer-Shelah lemma to bound the
shatter coefficients by the VC dimension. It will yield

SA(n) ≤
(en
d

)d
, d = VC(A)

Put together, these three steps yield the VC inequality.
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STEP 2: CONTROL OF THE RADEMACHER COMPLEX-
ITY

• We need the following Lemma whose proof is HW.

Lemma
For any B ⊂ Rn, such that |B| <∞ :, it holds

Rn(B) = E

[
max
b∈B

∣∣∣∣∣1n
n∑

i=1

σibi

∣∣∣∣∣
]
≤ max

b∈B
|b|2

√
2 log(2|B|)

n

where | · |2 denotes the Euclidean norm.
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STEP 2: CONTROL OF THE RADEMACHER COMPLEX-
ITY

• We apply the above Lemma to our problem by observing that

Rn(A) = sup
z1,...,zn

Rn(T (z)).

• In particular, since T (z) ⊂ {0, 1}n, we have |b|2 ≤
√
n for all

b ∈ T (z).

• Moreover, by definition of the shatter coefficients,
|T (z)| ≤ SA(n).

• Together with the above lemma, it yields the desired inequality:

Rn(A) ≤
√

2 log (2SA(n))

n
.
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STEP 3: SAUER-SHELAH LEMMA

• We need to use a lemma from combinatorics to relate the
shatter coefficients to the VC dimension.

• A priori, it is not clear from its definition that the VC
dimension may be at all useful to get better bounds.

• Recall that steps 1 and 2 put together yield the following
bound

E[sup
A∈A
| µn(A)− µ(A)|] ≤ 2

√
2 log (2SA(n))

n
· · · (∗ ∗ ∗)

• In particular, if SA(n) is exponential in n, the bound (***) is
not informative, i.e., it does not imply that the uniform
deviations go to zero as the sample size n goes to infinity.
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STEP 3: SAUER-SHELAH LEMMA

• The VC inequality suggest that this is not the case as soon as
VC(A) <∞ but it is not clear a priori.

• Indeed, it may be the case that SA(n) = 2n for n ≤ d and
SA(n) = 2n − 1 for n > d , which would imply that
VC(A) = d <∞ but that the right-hand side in (***) is
larger than 2 for all n.

• It turns our that this can never be the case: if the VC
dimension is finite, then the shatter coefficients are at most
polynomial in n, which is stated in the Sauer-Shelah lemma.
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STEP 3: SAUER-SHELAH LEMMA

Lemma (Sauer-Shelah)
If VC(A) = d , then ∀n ≥ 1,

SA(n) ≤
d∑

k=0

(
n

k

)
≤
(en
d

)d
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The VC inequality

To sum up everything, we have the following corollary.

Corollary (VC inequality)
For any family of sets A such that VC(A) = d and any δ ∈ (0, 1),
it holds with probability at least 1− δ,

sup
A∈A
|µn(A)− µ(A)| ≤ 2

√
2d log(2en/d)

n
+

√
log(2/δ)

2n
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Application to ERM

• The VC inequality provides an upper bound for
supA∈A |µn(A)− µ(A)| in terms of the VC dimension of the
class of sets A.
• This result translates directly to our quantity of interest:

sup
h∈H

∣∣∣R̂n(h)− R(h)
∣∣∣ ≤ 2

√√√√2VC(A) log
(

2en
VC(A)

)
n

+

√
log(2/δ)

2n

where A = {Ah : h ∈ H} and
Ah = {(x , y) ∈ X × {0, 1} : h(x) 6= y}.
• Unfortunately, the VC dimension of this class of subsets of
X × {0, 1} is not very natural.
• Since, a classifier h is a {0, 1} valued function, it is more

natural to consider the VC dimension of the family

A = {{h = 1} : h ∈ H} = {A : ∃h ∈ H, h(·) = I(· ∈ A)}.
33



Application to ERM

Definition
We define the VC dimension VC(H) of H to be the VC dimension
of A.
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Application to ERM

• It is not clear how VC(A) relates to the quantity VC(A).

• Fortunately, these two are actually equal as indicated in the
following lemma.

Lemma
Define the two families for sets: A = {Ah : h ∈ H} ∈ 2X×{0,1}

where Ah = {(x , y) ∈ X × {0, 1} : h(x) 6= y} and
Ā = {{h = 1} : h ∈ H} ∈ 2X Then, SA(n) = SA(n) for all n ≥ 1.
It implies VC(A) = VC(A).
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Application to ERM

It yields the following corollary to the VC inequality.

Corollary
Let H be a family of classifiers with VC dimension d . Then the
empirical risk classifier ĥerm over H satisfies

R
(
ĥerm

)
≤ min

h∈H
R(h) + 4

√
2d log(2en/d)

n
+

√
log(2/δ)

2n

with probability 1− δ.
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