Statistical Learning Theory

3. Vapnik-Chervonenkis (VC) theory

Yongdai Kim

Definition (Bounded Differences Condition)

Let $g : \mathcal{X} \to \mathbb{R}$ and constants c_i be given. Then g is said to satisfy the bounded differences condition (with constants c_i) if

$$\sup_{x_1,\ldots,x_n,x_i'} \left| g\left(x_1,\ldots,x_n\right) - g\left(x_1,\ldots,x_i',\ldots,x_n\right) \right| \le c_i$$

for every *i*.

Theorem (Bounded Differences Inequality) Suppose that X_1, \ldots, X_n are indepent random variables. If $g : \mathcal{X} \to \mathbb{R}$ satisfies the bounded differences condition, then

$$\mathbb{P}\left[\mid g\left(X_1,\ldots,X_n\right) - \mathbb{E}\left[g\left(X_1,\ldots,X_n\right)\mid > t\right] \le 2\exp\left(-\frac{2t^2}{\sum_i c_i^2}\right)\right]$$

- The upper bounds proved so far are meaningful only for a finite dictionary *H*, because if *M* = |*H*| is infinite all of the bounds we have will simply be infinity.
- To extend previous results to the infinite case, we essentially need the condition that only a finite number of elements in an infinite dictionary \mathcal{H} really matter.
- This is the objective of the VapnikChervonenkis (VC) theory which was developed in 1971 .

Empirical measure

• Recall that the key quantity we need to control is

$$2\sup_{h\in\mathcal{H}}\left(\hat{R}_n(h)-R(h)\right).$$

- Instead of the union bound which would not work in the infinite case, we seek some bound that potentially depends on *n* and the complexity of the set *H*.
- One approach is to consider some metric structure on \mathcal{H} and hope that if two elements in \mathcal{H} are close, then the quantity evaluated at these two elements are also close.
- On the other hand, the VC theory is more combinatorial and does not involve any metric space structure as we will see.

• By definition

$$\hat{R}_n(h) - R(h) = \frac{1}{n} \sum_{i=1}^n \left(\mathbb{I}(h(X_i) \neq Y_i) - \mathbb{E}\left[\mathbb{I}(h(X_i) \neq Y_i) \right] \right)$$

- Let Z = (X, Y) and Z_i = (X_i, Y_i), and let A denote the class of measurable sets in the sample space X × {0, 1}.
- For a classifier *h*, define $A_h \in \mathcal{A}$ by

$$\{Z_i \in A_h\} = \{h(X_i) \neq Y_i\}$$

• Moreover, define measures μ_n and μ on \mathcal{A} by

$$\mu_n(A) = \frac{1}{n} \sum_{i=1}^n \mathbb{I}(Z_i \in A) \text{ and } \mu(A) = \mathbb{P}[Z_i \in A]$$

for $A \in \mathcal{A}$.

• With this notation, we have proved that

$$\sup_{h\in\mathcal{H}}\hat{R}_n(h)-R(h)=\sup_{A\in\mathcal{A}}|\mu_n(A)-\mu(A)|\leq \sqrt{\frac{\log(2|\mathcal{A}|/\delta)}{2n}}$$

Empirical measure

- Since this is not accessible in the infinite case, we will derive an upper bound by use of bounded differences inequality.
- If we change the value of only one z_i in the function

$$z_1,\ldots,z_n\mapsto \sup_{A\in A}|\mu_n(A)-\mu(A)|,$$

the value of the function will differ by at most 1/n.

- Hence it satisfies the bounded difference assumption with $c_i = 1/n$ for all $1 \le i \le n$.
- Applying the bounded difference inequality, we get that

$$\left|\sup_{A \in \mathcal{A}} |\mu_n(A) - \mu(A)| - \mathbb{E}[\sup_{A \in \mathcal{A}} |\mu_n(A) - \mu(A)|]\right| \le \sqrt{\frac{\log(2/\delta)}{2n}}.$$

with probability at least $1 - \delta$.

- We will drive an upper bound of E[sup_{A∈A} |µ_n(A) − µ(A)|], and symmetrization is a frequently used technique for this purpose.
- Let $\mathcal{D} = \{Z_1, \ldots, Z_n\}$ be the sample set.
- To employ symmetrization, we take another independent copy of the sample set $\mathcal{D}' = \{Z'_1, \dots, Z'_n\}$.
- This sample only exists for the proof, so it is sometimes referred to as a ghost sample.

• Then we have

$$\mu(A) = \mathbb{P}[Z \in A]$$
$$= \mathbb{E}\left[\frac{1}{n}\sum_{i=1}^{n}\mathbb{I}\left(Z'_{i} \in A\right)\right]$$
$$= \mathbb{E}\left[\frac{1}{n}\sum_{i=1}^{n}\mathbb{I}\left(Z'_{i} \in A\right) \mid \mathcal{D}\right]$$
$$= \mathbb{E}\left[\mu'_{n}(A) \mid \mathcal{D}\right]$$

where $\mu'_n := \frac{1}{n} \sum_{i=1}^n \mathbb{I}(Z'_i \in A)$.

Thus by Jensen's inequality,

$$\mathbb{E}\left[\sup_{A\in\mathcal{A}}|\mu_{n}(A)-\mu(A)|\right] = \mathbb{E}\left[\sup_{A\in\mathcal{A}}|\mu_{n}(A)-\mathbb{E}\left[\mu_{n}'(A)\mid\mathcal{D}\right]|\right]$$
$$\leq \mathbb{E}\left[\sup_{A\in\mathcal{A}}\mathbb{E}\left[|\mu_{n}(A)-\mu_{n}'(A)|\mid\mathcal{D}\right]\right]$$
$$\leq \mathbb{E}\left[\sup_{A\in\mathcal{A}}|\mu_{n}(A)-\mu_{n}'(A)|\right]$$
$$= \mathbb{E}\left[\sup_{A\in\mathcal{A}}\left|\frac{1}{n}\sum_{i=1}^{n}\left(\mathbb{I}\left(Z_{i}\in\mathcal{A}\right)-\mathbb{I}\left(Z_{i}'\in\mathcal{A}\right)\right)\right|\right]$$

.

• Since \mathcal{D}' has the same distribution of \mathcal{D} , by symmetry $\mathbb{I}(Z_i \in A) - \mathbb{I}(Z'_i \in A)$ has the same distribution as $\sigma_i(\mathbb{I}(Z_i \in A) - \mathbb{I}(Z'_i \in A))$ where $\sigma_1, \ldots, \sigma_n$ are i.i.d. Rad $(\frac{1}{2})$, i.e.

$$\mathbb{P}\left[\sigma_{i}=1\right]=\mathbb{P}\left[\sigma_{i}=-1\right]=\frac{1}{2}$$

and σ_i 's are taken to be independent of both samples.

• Therefore,

$$\mathbb{E}[\sup_{A \in \mathcal{A}} | \mu_n(A) - \mu(A)|] \\ \leq \mathbb{E}\left[\sup_{A \in \mathcal{A}} \left| \frac{1}{n} \sum_{i=1}^n \sigma_i \left(\mathbb{I}(Z_i \in A) - \mathbb{I}(Z'_i \in A) \right) \right| \right] \\ \leq 2\mathbb{E}\left[\sup_{A \in \mathcal{A}} \left| \frac{1}{n} \sum_{i=1}^n \sigma_i \mathbb{I}(Z_i \in A) \right| \right] \cdots (*)$$

- Using symmetrization we have bounded $\mathbb{E}\left[\sup_{A \in A} |\mu_n(A) - \mu(A)|\right]$. by a much nicer quantity.
- Yet we still need an upper bound of the last quantity that depends only on the structure of A but not on the random sample {Z_i}.
- This is achieved by taking the supremum over all $z_i \in \mathcal{X} \times \{0, 1\} =: \mathcal{Y}.$

Definition

The Rademacher complexity of a family of sets ${\cal A}$ in a space ${\cal Y}$ is defined to be the quantity

$$\mathcal{R}_n(\mathcal{A}) = \sup_{z_1, \dots, \bar{z}_n \in \mathcal{Y}} \mathbb{E} \left[\sup_{A \in \mathcal{A}} \left| \frac{1}{n} \sum_{i=1}^n \sigma_i \mathbb{I} \left(z_i \in A \right) \right| \right]$$

The Rademacher complexity of a set $B \subset \mathbb{R}^n$ is defined to be

$$\mathcal{R}_n(B) = \mathbb{E}\left[\sup_{b\in B}\left|\frac{1}{n}\sum_{i=1}^n\sigma_i b_i\right|\right]$$

 $\bullet\,$ We conclude from (*) and the definition that

$$\mathbb{E}[\sup_{A\in\mathcal{A}}|\mu_n(A)-\mu(A)|]\leq 2\mathcal{R}_n(\mathcal{A}).$$

- In the definition of Rademacher complexity of a set, the quantity |¹/_n ∑ⁿ_{i=1} σ_ib_i| measures how well a vector b ∈ B correlates with a random sign pattern {σ_i}.
- The more complex *B* is, the better some vector in *B* can replicate a sign pattern.
- In particular, if B is the full hypercube $[-1, 1]^n$, then $\mathcal{R}_n(B) = 1$.
- However, if $B \subset [-1,1]^n$ contains only k -sparse vectors, then $\mathcal{R}_n(B) = k/n$.
- Hence $\mathcal{R}_n(B)$ is indeed a measurement of the complexity of the set *B*.

• The set of vectors to our interest in the definition of Rademacher complexity of \mathcal{A} is

$$T(z) := \left\{ \left(\mathbb{I}\left(z_1 \in A\right), \dots, \mathbb{I}\left(z_n \in A\right) \right)^T, A \in \mathcal{A} \right\}.$$

- Thus the key quantity here is the cardinality of T(z), i.e., the number of sign patterns these vectors can replicate as A ranges over A.
- Although the cardinality of A may be infinite, the cardinality of T(z) is bounded by 2ⁿ.

- We will complete the analysis of the performance of the empirical risk minimizer under a constraint on the VC dimension of the family of classifiers.
- To that end, we will see how to control Rademacher complexities using shatter coefficients.
- Moreover, we will see how the problem of controlling uniform deviations of the empirical measure μ_n from the true measure μ as done by Vapnik and Chervonenkis relates to our original classification problem.

Shattering

• Recall from the previous slide that we are interested in sets of the form

 $T(z) := \left\{ \left(\mathbb{I}\left(z_1 \in A\right), \dots, \mathbb{I}\left(z_n \in A\right)\right), A \in \mathcal{A} \right\}, z = (z_1, \dots, z_n) \cdots (**)$

- In particular, the cardinality of T(z), i.e., the number of binary patterns these vectors can replicate as A ranges over A, will be of critical importance, as it will arise when controlling the Rademacher complexity.
- Although the cardinality of A may be infinite, the cardinality of T(z) is always at most 2ⁿ.
- When it is of the size 2^n , we say that \mathcal{A} shatters the set z_1, \ldots, z_n . Formally, we have the following definition.

Definition A collection of sets A shatters the set of points $\{z_1, z_2, \ldots, z_n\}$

$$\operatorname{\mathsf{card}}\left\{\left(\mathbb{I}\left(z_{1}\in A
ight),\ldots,\mathbb{I}\left(z_{n}\in A
ight)
ight),A\in\mathcal{A}
ight\}=2^{n}$$

- The sets of points {z₁, z₂,..., z_n} that we are interested are realizations of the pairs Z₁ = (X₁, Y₁),..., Z_n = (X_n, Y_n) and may, in principle take any value over the sample space.
- Therefore, we define the shatter coefficient to be the largest cardinality that we may obtain.

Definition

The shatter coefficients of a class of sets A is the sequence of numbers $\{S_A(n)\}_{n\geq 1}$, where for any $n\geq 1$

$$\mathcal{S}_{\mathcal{A}}(n) = \sup_{z_1,...,z_n} \operatorname{card} \left\{ \left(\mathbb{I}\left(z_1 \in A\right), \ldots, \mathbb{I}\left(z_n \in A\right) \right), A \in \mathcal{A} \right\}$$

and the suprema are taken over the whole sample space.

- By definition, the n th shatter coefficient S_A(n) is equal to 2ⁿ if there exists a set {z₁, z₂,..., z_n} that A shatters.
- The largest of such sets is precisely the Vapnik-Chervonenkis or VC dimension.

Definition

The Vapnik-Chervonenkis dimension, or VC -dimension of \mathcal{A} is the largest integer d such that $\mathcal{S}_{\mathcal{A}}(d) = 2^d$. We write $VC(\mathcal{A}) = d$. If $\mathcal{S}_{\mathcal{A}}(n) = 2^n$ for all positive integers n, then $VC(\mathcal{A}) := \infty$

- In other words, A shatters some set of points of cardinality d but shatters no set of points of cardinality d + 1.
- In particular, A also shatters no set of points of cardinality $d' \ge d$ so that the VC dimension is well defined.
- In the sequel, we will see that the VC dimension will play the role similar to of cardinality, but on an exponential scale.
- For interesting classes A such that $card(A) = \infty$, we also may have $VC(A) < \infty$.

- For example, assume that A is the class of half-lines,
 A = {(-∞, a], a ∈ ℝ} ∪ {[a, ∞), a ∈ ℝ}, which is clearly infinite.
- Then, we can clearly shatter a set of size 2 but we for three points z₁, z₂, z₃, ∈ ℝ, if for example z₁ < z₂ < z₃, we cannot create the pattern (0, 1, 0) (see Figure 1 in the next slide).
- Indeed, half lines can can only create patterns with zeros followed by ones or with ones followed by zeros but not an alternating pattern like (0, 1, 0).

Shattering

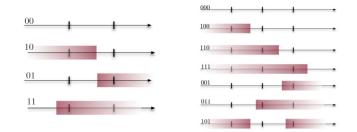


Figure 1 : If $\mathcal{A} = \{$ halflines $\}$, then any set of size n = 2 is shattered because we can create all $2^n = 40/1$ patterns (left); if n = 3 the pattern (0, 1, 0) cannot be reconstructed: $\mathcal{S}_{\mathcal{A}}(3) = 7 < 2^3$ (right). Therefore, VC(\mathcal{A}) = 2

The VC inequality

• We have now introduced all the ingredients necessary to state the main result of this section: the VC inequality.

Theorem (VC inequality) For any family of sets A with VC dimension VC(A) = d, it holds

$$\mathbb{E} \sup_{A \in \mathcal{A}} |\mu_n(A) - \mu(A)| \le 2\sqrt{\frac{2d \log(2en/d)}{n}}$$

- Note that this result holds even if A is infinite as long as its VC dimension is finite.
- Moreover, observe that log(|A|) has been replaced by a term of order d log(2en/d).
- To prove the VC inequality, we proceed in three steps:

The VC inequality

1. Symmetrization, to bound the quantity of interest by the Rademacher complexity:

$$\mathbb{E}[\sup_{A\in\mathcal{A}} | \mu_n(A) - \mu(A)|] \leq 2\mathcal{R}_n(\mathcal{A}).$$

We have already done this step in the previous lecture.

2. Control of the Rademacher complexity using shatter coefficients. We are going to show that

$$\mathcal{R}_n(\mathcal{A}) \leq \sqrt{\frac{2\log\left(2\mathcal{S}_{\mathcal{A}}(n)
ight)}{n}}$$

3. We are going to need the Sauer-Shelah lemma to bound the shatter coefficients by the VC dimension. It will yield

$$\mathcal{S}_{\mathcal{A}}(n) \leq \left(\frac{en}{d}\right)^d, \quad d = \mathsf{VC}(\mathcal{A})$$

Put together, these three steps yield the VC inequality.

• We need the following Lemma whose proof is HW.

Lemma For any $B \subset \mathbb{R}^n$, such that $|B| < \infty$:, it holds

$$\mathcal{R}_n(B) = \mathbb{E}\left[\max_{b \in B} \left| \frac{1}{n} \sum_{i=1}^n \sigma_i b_i \right| \right] \le \max_{b \in B} |b|_2 \frac{\sqrt{2\log(2|B|)}}{n}$$

where $|\cdot|_2$ denotes the Euclidean norm.

STEP 2: CONTROL OF THE RADEMACHER COMPLEX-ITY

• We apply the above Lemma to our problem by observing that

$$\mathcal{R}_n(\mathcal{A}) = \sup_{z_1,\ldots,z_n} \mathcal{R}_n(T(z)).$$

- In particular, since $T(z) \subset \{0,1\}^n$, we have $|b|_2 \leq \sqrt{n}$ for all $b \in T(z)$.
- Moreover, by definition of the shatter coefficients, $|T(z)| \leq S_A(n).$
- Together with the above lemma, it yields the desired inequality:

$$\mathcal{R}_n(\mathcal{A}) \leq \sqrt{\frac{2\log(2S_{\mathcal{A}}(n))}{n}}.$$

STEP 3: SAUER-SHELAH LEMMA

- We need to use a lemma from combinatorics to relate the shatter coefficients to the VC dimension.
- A priori, it is not clear from its definition that the VC dimension may be at all useful to get better bounds.
- Recall that steps 1 and 2 put together yield the following bound

$$\mathbb{E}[\sup_{A \in A} \mid \mu_n(A) - \mu(A) \mid] \le 2\sqrt{\frac{2\log\left(2\mathcal{S}_{\mathcal{A}}(n)\right)}{n}} \cdots (* * *)$$

 In particular, if S_A(n) is exponential in n, the bound (***) is not informative, i.e., it does not imply that the uniform deviations go to zero as the sample size n goes to infinity.

- The VC inequality suggest that this is not the case as soon as $VC(A) < \infty$ but it is not clear a priori.
- Indeed, it may be the case that $S_A(n) = 2^n$ for $n \le d$ and $S_A(n) = 2^n 1$ for n > d, which would imply that $VC(A) = d < \infty$ but that the right-hand side in (***) is larger than 2 for all n.
- It turns our that this can never be the case: if the VC dimension is finite, then the shatter coefficients are at most polynomial in *n*, which is stated in the Sauer-Shelah lemma.

Lemma (Sauer-Shelah)
If
$$VC(A) = d$$
, then $\forall n \ge 1$,

$$\mathcal{S}_{\mathcal{A}}(n) \leq \sum_{k=0}^{d} \left(\begin{array}{c} n \\ k \end{array} \right) \leq \left(rac{en}{d} \right)^{d}$$

To sum up everything, we have the following corollary.

Corollary (VC inequality) For any family of sets A such that VC(A) = d and any $\delta \in (0, 1)$, it holds with probability at least $1 - \delta$,

$$\sup_{A \in \mathcal{A}} |\mu_n(A) - \mu(A)| \le 2\sqrt{\frac{2d\log(2en/d)}{n}} + \sqrt{\frac{\log(2/\delta)}{2n}}$$

Application to ERM

- The VC inequality provides an upper bound for sup_{A∈A} |μ_n(A) – μ(A)| in terms of the VC dimension of the class of sets A.
- This result translates directly to our quantity of interest:

$$\sup_{h \in \mathcal{H}} \left| \hat{R}_n(h) - R(h) \right| \le 2\sqrt{\frac{2\operatorname{VC}(\mathcal{A})\log\left(\frac{2en}{\operatorname{VC}(\mathcal{A})}\right)}{n}} + \sqrt{\frac{\log(2/\delta)}{2n}}$$

where $\mathcal{A} = \{A_h : h \in \mathcal{H}\}$ and

 $A_h = \{(x, y) \in \mathcal{X} \times \{0, 1\} : h(x) \neq y\}.$

- Unfortunately, the VC dimension of this class of subsets of $\mathcal{X}\times\{0,1\} \text{ is not very natural}.$
- Since, a classifier *h* is a {0,1} valued function, it is more natural to consider the VC dimension of the family

$$\overline{\mathcal{A}} = \{\{h = 1\} : h \in \mathcal{H}\} = \{A : \exists h \in \mathcal{H}, h(\cdot) = \mathbb{I}(\cdot \in A)\}.$$

Definition We define the VC dimension VC(\mathcal{H}) of \mathcal{H} to be the VC dimension of $\overline{\mathcal{A}}$.

- It is not clear how $VC(\overline{A})$ relates to the quantity VC(A).
- Fortunately, these two are actually equal as indicated in the following lemma.

Lemma

Define the two families for sets: $\mathcal{A} = \{A_h : h \in \mathcal{H}\} \in 2^{\mathcal{X} \times \{0,1\}}$ where $A_h = \{(x, y) \in \mathcal{X} \times \{0,1\} : h(x) \neq y\}$ and $\overline{A} = \{\{h = 1\} : h \in \mathcal{H}\} \in 2^{\mathcal{X}}$ Then, $\mathcal{S}_{\mathcal{A}}(n) = \mathcal{S}_{\overline{\mathcal{A}}}(n)$ for all $n \ge 1$. It implies $VC(\mathcal{A}) = VC(\overline{\mathcal{A}})$. It yields the following corollary to the VC inequality.

Corollary Let \mathcal{H} be a family of classifiers with VC dimension d. Then the empirical risk classifier \hat{h}^{erm} over \mathcal{H} satisfies

$$R\left(\hat{h}^{\mathrm{erm}}
ight) \leq \min_{h\in\mathcal{H}} R(h) + 4\sqrt{\frac{2d\log(2en/d)}{n}} + \sqrt{\frac{\log(2/\delta)}{2n}}$$

with probability $1 - \delta$.