
Statistical Learning Theory

2. Statistical learning theory for binary classification
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BINARY CLASSIFICATION

• In the previous section, we looked broadly at the problems that
machine learning seeks to solve and the techniques we will
cover in this course.

• Today, we will focus on one such problem, binary classification,
and review some important notions that will be foundational
for the rest of the course.
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Bayes Classifier

• Recall the setup of binary classification: we observe a sequence
(X1,Y1) , . . . , (Xn,Yn) of n independent draws from a joint
distribution PX ,Y .

• The variable Y (called the label) takes values in {0, 1}, and
the variable X takes values in some space X representing
"features" of the problem.
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Bayes Classifier

• Since Y is supported on {0, 1}, the conditional random
variable Y | X is distributed according to a Bernoulli
distribution.
• We write Y | X ∼ Bernoulli(η(X )), where

η(X ) = P(Y = 1 | X ) = E[Y | X ]

(The function η is called the regression function.)
• We begin by defining an optimal classifier called the Bayes

classifier. Intuitively, the Bayes classifier is the classifier that
"knows" η -it is the classifier we would use if we had perfect
access to the distribution Y | X .

(*) It will turn out that the Bayes classifier does not depend on
the marginal distribution PX of X . This is why we can focus
on discriminative approaches without loss of generality.
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Bayes Classifier

Definition
The Bayes classifier of X given Y , denoted h∗, is the function
defined by the rule

h∗(x) =

{
1 if η(x) > 1/2
0 if η(x) ≤ 1/2.

In other words, h∗(X ) = 1 whenever
P(Y = 1 | X ) > P(Y = 0 | X ).
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Bayes Classifier

• Our measure of performance for any classifier h (that is, any
function mapping X to {0, 1} ) will be the classification error:
R(h) = P(Y 6= h(X )).

• The Bayes risk is the value R∗ = R (h∗) of the classification
error associated with the Bayes classifier.

• The following theorem establishes that the Bayes classifier is
optimal with respect to this metric.
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Bayes Classifier

Theorem
For any classifier h, the following identity holds:

R(h)− R (h∗) =

∫
h 6=h∗

|2η(x)− 1|Px(dx)

= EX [|2η(X )− 1|1 (h(X ) 6= h∗(X ))] (1)

where h = h∗ is the (measurable) set {x ∈ X | h(x) 6= h∗(x)}. In
particular, since the integrand is nonnegative, the classification
error R∗ of the Bayes classifier is the minimizer of R(h) over all
classifiers h. Moreover,

R (h∗) = E[min(η(X ), 1− η(X ))] ≤ 1
2
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Bayes Classifier

Remark 1

• The quantity R(h)− R (h∗) in the statement of the theorem
above is called the excess risk of h and denoted E(h).

("Excess," that is, above the Bayes classifier.)

• The theorem implies that E(h) ≥ 0.
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Bayes Classifier

Remark 2

• The risk of the Bayes classifier R∗ equals 1/2 if and only if
η(X ) = 1/2 almost surely.

• This maximal risk for the Bayes classifier occurs precisely when
Y "contains no information" about the feature variable X .

• Equation (1) makes clear that the excess risk weighs the
discrepancy between h and h∗ according to how far η is from
1/2.

• When η is close to 1/2, no classifier can perform well and the
excess risk is low.

• When η is far from 1/2, the Bayes classifier performs well and
we penalize classifiers that fail to do so more heavily.
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Bayes Classifier

• Linear discriminant analysis attacks binary classification by
putting some model on the data (i.e. generative model).
• One way to achieve this is to impose some distributional

assumptions on the conditional distributions X | Y = 0 and
X | Y = 1.
• We can reformulate the Bayes classifier in these terms by

applying Bayes’ rule:

η(x) = P(Y = 1 | X = x)

=
P(X = x | Y = 1)P(Y = 1)

P(X = x | Y = 1)P(Y = 1) + P(X = x | Y = 0)P(Y = 0)

(In general, when PX is a continuous distribution, we should
consider infinitesimal probabilities P(X ∈ dx). )
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Bayes Classifier

• Assume that X | Y = 0 and X | Y = 1 have densities p0 and
p1.

• Also let P(Y = 1) = π is some constant reflecting the
underlying tendency of the label Y . (Typically, we imagine
that π is close to 1/2, but that need not be the case: in many
applications, such as anomaly detection, Y = 1 is a rare
event.)

• Then h∗(X ) = 1 whenever η(X ) ≥ 1/2, or, equivalently,
whenever

p1(x)

p0(x)
≥ 1− π

π
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Bayes Classifier

• When π = 1/2, this rule amounts to reporting 1 or 0 by
comparing the densities p1 and p0.

• For instance, in Figure 2, if π = 1/2 then the Bayes classifier
reports 1 whenever p1 ≥ p0, i.e., to the right of the dotted
line, and 0 otherwise.

• On the other hand, when π is far from 1/2, the Bayes classifier
is weighed towards the underlying bias of the label variable Y .
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Bayes Classifier

Figure 1: The Bayes classifier when π = 1/2
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Empirical Risk Minimization

• The above considerations are all probabilistic, in the sense that
they discuss properties of some underlying probability
distribution.

• The statistician does not have access to the true probability
distribution PX ,Y ; she only has access to i.i.d. samples
(X1,Y1) , . . . , (Xn,Yn) .

• We consider now this statistical perspective.

• However, note that the underlying distribution PX ,Y still
appears explicitly in what follows, since that is how we
measure our performance: we judge the classifiers we produced
on future i.i.d. draws from PX ,Y .
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Empirical Risk Minimization

• Given data Dn = {(X1,Y1) , . . . , (Xn,Yn)}, we build a
classifier ĥn(X ), which is random in two senses: it is a function
of a random variable X and also depends implicitly on the
random data Dn.

• As above, we judge a classifier according to the quantity
E
(
ĥn
)
. This is a random variable: though we have integrated

out X , the excess risk still depends on the data Dn.

• We therefore will consider bounds both on its expected value
and bounds that hold in high probability.

• In any case, the bound E
(
ĥn
)
≥ 0 always holds.
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Empirical Risk Minimization

Definition
The empirical risk of a classifier h is given by

R̂n(h) =
1
n

n∑
i=1

1 (Yi 6= h (Xi ))

16



Empirical Risk Minimization

• Minimizing the empirical risk over the family of all classifiers is
useless, since we can always minimize the empirical risk by
mimicking the data and classifying arbitrarily otherwise.

• We therefore limit our attention to classifiers in a certain
family H.
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Empirical Risk Minimization

Definition
The Empirical Risk Minimizer (ERM) over H is any element ĥerm

of the set argminh∈H R̂n(h).

(*) In fact, even an approximate solution will do: our bounds will
still hold whenever we produce a classifier ĥ satisfying
R̂n(ĥ) ≤ infh∈H Rn(h) + ε.

(*) ERM is one of many learning algorithms. We focus on ERM
since there are well developed learning theories.
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Empirical Risk Minimization

• In order for our results to be meaningful, the class H must be
much smaller than the space of all classifiers.

• On the other hand, we also hope that the risk of ĥerm will be
close to the Bayes risk, but that is unlikely if H is too small.

• We will learn how to quantify this tradeoff.
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Oracle Inequalities

• An oracle is a mythical classifier, one that is impossible to
construct from data alone but whose performance we
nevertheless hope to mimic.

• Specifically, given H we define h̄ to be an element of
argminh∈H R(h) - a classifier in H that minimizes the true risk.

• Of course, we cannot determine h̄, but we can hope to prove a
bound of the form

R(ĥ) ≤ R(h̄) + something small. (2)

• Since h̄ is the best minimizer in H given perfect knowledge of
the distribution, a bound of the form given in Equation(2)
would imply that ĥ has performance that is almost best-inclass.

20



Oracle Inequalities

• There is a natural tradeoff between the two terms on the
right-hand side of Equation (??).

• When H is small, we expect the performance of the oracle h̄

to suffer, but we may hope to approximate h̄ quite closely.

(*) Indeed, at the limit where H is a single function, the
"something small" in Equation (2) is equal to zero.
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Oracle Inequalities

• On the other hand, as H grows the oracle will become more
powerful but approximating it becomes more statistically
difficult.

• In other words, we need a larger sample size to achieve the
same measure of performance.

• Since R(ĥ) is a random variable, we ultimately want to prove a
bound in expectation or tail bound of the form

P
(
R(ĥ) ≤ R(h̄) + ∆n,δ(H)

)
≥ 1− δ

where ∆n,δ(H) is some explicit term depending on our sample
size and our desired level of confidence.
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Oracle Inequalities

• In the end, we should recall that

E(ĥ) = R(ĥ)− R (h∗) = (R(ĥ)− R(h̄)) +
(
R(h̄)− R (h∗)

)
.

• The second term in the above equation is the approximation
error, which is unavoidable once we fix the class H.
• Oracle inequalities give a means of bounding the first term,

the stochastic error.
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Hoeffding’s Theorem

Theorem (Hoeffding’s Theorem)
Let X1, . . . ,Xn be n independent random variables such that
Xi ∈ [0, 1] almost surely. Then for any t > 0,

P

(∣∣∣∣∣1n
n∑

i=1

Xi − EXi

∣∣∣∣∣ > t

)
≤ 2e−2nt2

• In other words, deviations from the mean decay exponentially
fast in n and t.
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Maximal inequality

• Hoeffding’s Theorem implies that, for any classifier h, the
bound ∣∣∣R̂n(h)− R(h)

∣∣∣ ≤√ log(2/δ)

2n
holds with probability 1− δ.
• If H is a finite family, i.e., H = {h1, . . . , hM}, then with

probability 1− δ/M the bound

∣∣∣R̂n (hj)− R (hj)
∣∣∣ ≤√ log(2M/δ)

2n

holds.
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Maximal inequality

• The event that maxj

∣∣∣R̂n (hj)− R (hj)
∣∣∣ > t is the union of the

events
∣∣∣R̂n (hj)− R (hj)

∣∣∣ > t for j = 1, . . . ,M, so the union
bound immediately implies that

max
j

∣∣∣R̂n (hj)− R (hj)
∣∣∣ ≤√ log(2M/δ)

2n

with probability 1− δ.
• The logarithmic dependence on M implies that we can

increase the size of the family H exponentially quickly with n

and maintain the same guarantees on our estimate.
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Learning with a finite dictionary

• Assume |H| = M.

• Let ĥ be
ĥ ∈ argmin

h∈H
R̂n(h)

• Let h̄ be
h̄ ∈ argmin

h∈H
R(h).
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Learning with a finite dictionary

Theorem
The estimator ĥ satisfies

R(ĥ) ≤ R(h̄) +

√
2 log(2M/δ)

n

with probability at least 1− δ.

(*) It can be shown that

E[R(ĥ)] ≤ R(h̄) +

√
2 log(2M)

n

28



Proof

From the definition of ĥ, we have R̂n(ĥ) ≤ R̂n(h̄), which gives

R(ĥ) ≤ R(h̄) +
[
R̂n(h̄)− R(h̄)

]
+
[
R(ĥ)− R̂n(ĥ)

]
The only term here that we need to control is the second one, but
since we don’t have any real information about h̄, we will bound it
by a maximum over H and then apply Hoeffding:[

R̂n(h̄)− R(h̄)
]

+
[
R(ĥ)− R̂n(ĥ)

]
≤ 2max

j

∣∣∣R̂n (hj)− R (hj)
∣∣∣ ≤ 2

√
log(2M/δ)

2n

with probability at least 1− δ, which completes the proof.
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