Statistical Learning Theory

2. Statistical learning theory for binary classification




BINARY CLASSIFICATION

® |n the previous section, we looked broadly at the problems that
machine learning seeks to solve and the techniques we will
cover in this course.

® Today, we will focus on one such problem, binary classification,
and review some important notions that will be foundational
for the rest of the course.



Bayes Classifier

e Recall the setup of binary classification: we observe a sequence
(X1, Y1),...,(Xn, Yn) of nindependent draws from a joint
distribution Px y.

® The variable Y (called the label) takes values in {0,1}, and
the variable X takes values in some space X’ representing

"features" of the problem.



Bayes Classifier

® Since Y is supported on {0,1}, the conditional random
variable Y | X is distributed according to a Bernoulli
distribution.

e We write Y | X ~ Bernoulli(n(X)), where

n(X)=B(Y =1|X) =E[Y | X]

(The function 7 is called the regression function.)

e \We begin by defining an optimal classifier called the Bayes
classifier. Intuitively, the Bayes classifier is the classifier that
"knows" 7 -it is the classifier we would use if we had perfect
access to the distribution Y | X.

(*) It will turn out that the Bayes classifier does not depend on
the marginal distribution Px of X. This is why we can focus
on discriminative approaches without loss of generality.



Bayes Classifier

Definition
The Bayes classifier of X given Y, denoted h*, is the function

defined by the rule

B (x) = 1 ifn(x) >1/2
7Y 0 i) < 1/2.

In other words, h*(X) = 1 whenever
P(Y=1|X)>P(Y=0]X).



Bayes Classifier

® Our measure of performance for any classifier h (that is, any
function mapping X to {0,1} ) will be the classification error:
R(h) = P(Y # h(X)).

® The Bayes risk is the value R* = R (h*) of the classification
error associated with the Bayes classifier.

® The following theorem establishes that the Bayes classifier is

optimal with respect to this metric.



Bayes Classifier

Theorem
For any classifier h, the following identity holds:

R R () = [ 1210 ~11Pu(a5)
= Ex [200) ~ 1 (h(X) # ()] (1)

where h = h* is the (measurable) set {x € X | h(x) # h*(x)}. In
particular, since the integrand is nonnegative, the classification
error R* of the Bayes classifier is the minimizer of R(h) over all

classifiers h. Moreover,

R (h*) = E[min(n(X), 1 —n(X))] <

N -



Bayes Classifier

Remark 1

® The quantity R(h) — R (h*) in the statement of the theorem
above is called the excess risk of h and denoted £(h).
("Excess," that is, above the Bayes classifier.)

® The theorem implies that £(h) > 0.



Bayes Classifier

Remark 2

® The risk of the Bayes classifier R* equals 1/2 if and only if
n(X) = 1/2 almost surely.

® This maximal risk for the Bayes classifier occurs precisely when
Y "contains no information" about the feature variable X.

® Equation (1) makes clear that the excess risk weighs the
discrepancy between h and h* according to how far 7 is from
1/2.

® When 7 is close to 1/2, no classifier can perform well and the
excess risk is low.

® When 7 is far from 1/2, the Bayes classifier performs well and
we penalize classifiers that fail to do so more heavily.



Bayes Classifier

® Linear discriminant analysis attacks binary classification by
putting some model on the data (i.e. generative model).

® One way to achieve this is to impose some distributional
assumptions on the conditional distributions X | Y =0 and
X|Y=1

e \We can reformulate the Bayes classifier in these terms by

applying Bayes' rule:
nx)=P(Y =1] X =x)

B P(X=x|Y=1P(Y =1)
CPX=x|Y=DP(Y=1)+PX=x]|Y=0PY =0)

(In general, when Px is a continuous distribution, we should
consider infinitesimal probabilities P(X € dx). )
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Bayes Classifier

® Assume that X | Y =0 and X | Y = 1 have densities py and
p1-

® Also let P(Y = 1) = 7 is some constant reflecting the
underlying tendency of the label Y. (Typically, we imagine
that 7 is close to 1/2, but that need not be the case: in many
applications, such as anomaly detection, Y = 1 is a rare

event.)
® Then h*(X) = 1 whenever n(X) > 1/2, or, equivalently,
whenever
p1(x) - -7
po(x) — 7
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Bayes Classifier

® When 7 = 1/2, this rule amounts to reporting 1 or 0 by
comparing the densities p; and po.

® For instance, in Figure 2, if 1 = 1/2 then the Bayes classifier
reports 1 whenever p; > po, i.e., to the right of the dotted
line, and 0 otherwise.

® On the other hand, when 7 is far from 1/2, the Bayes classifier
is weighed towards the underlying bias of the label variable Y.
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Bayes Classifier

h*(z) =0 - h*(z) =1

Figure 1: The Bayes classifier when 7 =1/2
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Empirical Risk Minimization

® The above considerations are all probabilistic, in the sense that
they discuss properties of some underlying probability
distribution.

® The statistician does not have access to the true probability
distribution Px y; she only has access to i.i.d. samples
(X1, Y1), .-+, (Xn, Yn) .

® \We consider now this statistical perspective.

® However, note that the underlying distribution Px y still
appears explicitly in what follows, since that is how we
measure our performance: we judge the classifiers we produced
on future i.i.d. draws from Px y.
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Empirical Risk Minimization

® Given data D, = {(X1, Y1),...,(Xn, Yn)}, we build a
classifier h,(X), which is random in two senses: it is a function
of a random variable X and also depends implicitly on the
random data D,,.

® As above, we judge a classifier according to the quantity
£ <f1n>. This is a random variable: though we have integrated
out X, the excess risk still depends on the data D,,.

® We therefore will consider bounds both on its expected value
and bounds that hold in high probability.

® |n any case, the bound & </A1,,) > 0 always holds.
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Empirical Risk Minimization

Definition
The empirical risk of a classifier h is given by

Ru(h) = = 3" 1(Y: # h(X)
i=1
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Empirical Risk Minimization

® Minimizing the empirical risk over the family of all classifiers is
useless, since we can always minimize the empirical risk by
mimicking the data and classifying arbitrarily otherwise.

® \We therefore limit our attention to classifiers in a certain

family H.
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Empirical Risk Minimization

Definition A
The Empirical Risk Minimizer (ERM) over H is any element h*"™
of the set argming,c;; Ra(h).

(*) In fact, even an approximate solution will do: our bounds will
still hold whenever we produce a classifier h satisfying
Rn(h) < infre Ro(h) + €.

(*) ERM is one of many learning algorithms. We focus on ERM
since there are well developed learning theories.
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Empirical Risk Minimization

® |n order for our results to be meaningful, the class # must be
much smaller than the space of all classifiers.

e On the other hand, we also hope that the risk of A™ will be
close to the Bayes risk, but that is unlikely if H is too small.

e We will learn how to quantify this tradeoff.
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Oracle Inequalities

® An oracle is a mythical classifier, one that is impossible to
construct from data alone but whose performance we
nevertheless hope to mimic.

e Specifically, given H we define h to be an element of

argmin, <4 R(h) - a classifier in H that minimizes the true risk.

e Of course, we cannot determine h, but we can hope to prove a
bound of the form

R(h) < R(h) + something small. (2)

® Since h is the best minimizer in  given perfect knowledge of
the distribution, a bound of the form given in Equation(2)
would imply that / has performance that is almost best-inclass.
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Oracle Inequalities

® There is a natural tradeoff between the two terms on the
right-hand side of Equation (?7).

e When # is small, we expect the performance of the oracle h
to suffer, but we may hope to approximate h quite closely.

(*) Indeed, at the limit where H is a single function, the
"something small" in Equation (2) is equal to zero.
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Oracle Inequalities

® On the other hand, as H grows the oracle will become more

powerful but approximating it becomes more statistically
difficult.

® |n other words, we need a larger sample size to achieve the

same measure of performance.

~

® Since R(h) is a random variable, we ultimately want to prove a
bound in expectation or tail bound of the form

P (R(R) < R(B) + Bs(H)) > 10

where A, 5(#) is some explicit term depending on our sample
size and our desired level of confidence.
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Oracle Inequalities

® |n the end, we should recall that
E(h) = R(h) — R(h*) = (R(h) — R(h)) + (R(h) — R (h")) .

® The second term in the above equation is the approximation

error, which is unavoidable once we fix the class H.

e QOracle inequalities give a means of bounding the first term,
the stochastic error.

23



Hoeffding's Theorem

Theorem (Hoeffding’s Theorem)
Let Xi,...,X, be n independent random variables such that

X;i € [0,1] almost surely. Then for any t > 0,

1 n
]P’(n;X,-—IEX,-

® |n other words, deviations from the mean decay exponentially

2
> t) < Qe 2nt

fast in n and t.
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Maximal inequality

e Hoeffding's Theorem implies that, for any classifier h, the
bound

ulh) — R(R)| < /" 2E2)

holds with probability 1 — 4.
o If #H is a finite family, i.e., H = {h1,..., hy}, then with
probability 1 — /M the bound

log(2M/4)

Ro(hy) = R ()| < /=55

holds.
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Maximal inequality

A

® The event that max; |R, (hj) — R(hj)’ > t is the union of the

events ‘R’,,(hj) — R(hj)| > tforj=1,..., M, so the union
bound immediately implies that

max

o (i) — R ()| < |/ E2M/2)

- 2n

with probability 1 — 4.
® The logarithmic dependence on M implies that we can

increase the size of the family # exponentially quickly with n
and maintain the same guarantees on our estimate.
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Learning with a finite dictionary

® Assume |H| = M.
e Let hbe

h € argminR,(h)
heH

e Let hbe

h € argminR(h).
heH
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Learning with a finite dictionary

Theorem
The estimator h satisfies

R(h) < R(R) + 2Iog(il\/l/5)

with probability at least 1 — 0.

(*) It can be shown that

E[R(R)] < R(R) + ) 228 2M) 'Ogr(fM)
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From the definition of h, we have R,(h) < R,(h), which gives

R(h) < R(R) + [/%,,(/‘1) — R(h ] /%,,(/3)}
The only term here that we need to control is the second one, but
since we don't have any real information about h, we will bound it

by a maximum over H and then apply Hoeffding:
|Ro(B) = R(B)| + [R(B) — Ralh)]

log(2M/4)

< 2max >
n

J

R (hy) — R(hj)‘ <2
with probability at least 1 — 0, which completes the proof.
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