
Statistical Learning Theory

1. Introduction to statistical learning theory
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Binary classification

• A large part of this class will be devoted to one of the simplest
problem of statistical learning theory: binary classification.

• In this problem, we observe (X1,Y1) , . . . , (Xn,Yn) that are n

independent random copies of (X ,Y ) ∈ X × {0, 1}.
• Denote by PX ,Y the joint distribution of (X ,Y ).

• The so-called feature X lives in some abstract space X (think
Rd ) and Y ∈ {0, 1} is called label.

• For example, X can be a collection of gene expression levels
measured on a patient and Y indicates if this person suffers
from obesity.
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Binary classification

• The goal of binary classification is to build a rule to predict Y
given X using only the data at hand.

• Such a rule is a function h : X → {0, 1} called a classifier.

• Some classifiers are better than others and we will favor ones
that have low classification error R(h) = P(h(X ) 6= Y ).
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Binary classification

• Let us make some important remarks.

• First of all, since Y ∈ {0, 1} then Y has a Bernoulli
distribution: so much for distribution free assumptions!

• However, we will not make assumptions on the marginal
distribution of X or, what matters for prediction, the
conditional distribution of Y given X .

• We write, Y | X ∼ Ber(η(X )), where
η(X ) = P(Y = 1 | X ) = E[Y | X ] is called the regression
function of Y onto X .
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Binary classification

• Next, note that we did not write Y = η(X ).

• Actually we have Y = η(X ) + ε, where ε = Y − η(X ) is a
"noise" random variable that satisfies E[ε | X ] = 0.

• In particular, this noise accounts for the fact that X may not
contain enough information to predict Y perfectly.

• This is clearly the case in our genomic example above

• The noise vanishes if and only if η(x) ∈ {0, 1} for all x ∈ X .
Figure ?? illustrates the case where there is no noise and the
the more realistic case where there is noise.
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Binary classification

Figure 1: The thick black curve corresponds to the noiseless case where
Y = η(X ) ∈ {0, 1} and the thin red curve corresponds to the more
realistic case where η ∈ [0, 1]. In the latter case, even full knowledge of η
does not guarantee a perfect prediction of Y .
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Binary classification

• When η(x) is close to .5, there is essentially no information
about Y in X as the Y is determined essentially by a toss up.

• In this case, it is clear that even with an infinite amount of
data to learn from, we cannot predict Y well since there is
nothing to learn.
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Binary classification

• In the presence of noise, since we cannot predict Y perfectly,
and thus we cannot drive the classification error R(h) to zero,
regardless of what classifier h we use.

• What is the smallest value of R(h) that can be achieved?

• As a thought experiment, assume to begin with that we have
all the information that we may ever hope to get, namely we
know the regression function η(·).
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Binary classification

• For a given X to classify, if η(X ) = 1/2 we may just toss a
coin to decide our prediction and discard X since it contains
no information about Y .
• However, if η(X ) 6= 1/2, we have an edge over random

guessing: if η(X ) > 1/2, it means that
P(Y = 1 | X ) > P(Y = 0 | X ) or, in words, that 1 is more
likely to be the correct label.
• We will see that the classifier h∗(X ) = I(η(X ) > 1/2) (called

Bayes classifier) is actually the best possible classifier in the
sense that

R (h∗) = inf
h(·)

R(h)

where the infimum is taken over all classifiers, i.e. functions
from X to {0, 1}.
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Binary classification

• Note that unless η(x) ∈ {0, 1} for all x ∈ X (noiseless case),
we have R (h∗) 6= 0.

• However, we can always look at the excess risk E(h) of a
classifier h defined by

E(h) = R(h)− R (h∗) ≥ 0.

• In particular, we can hope to drive the excess risk to zero with
enough observations by estimating h∗ accurately.
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Empirical risk

• The Bayes classifier h∗, while optimal, presents a major
drawback: we cannot compute it because we do not know the
regression function η.

• Instead, we have access to the data (X1,Y1) , . . . , (Xn,Yn),
which contains some (but not all) information about η and
thus h∗.

• In order to mimic the properties of h∗ recall that it minimizes
R(h) over all h.
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Empirical risk

• But the function R(·) is unknown since it depends on the
unknown distribution PX ,Y of (X ,Y ).

• We estimate it by the empirical classification error, or simply
empirical risk R̂n(·) defined for any classifier h by

R̂n(h) =
1
n

n∑
i=1

I (h (Xi ) 6= Yi ) .
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Empirical risk

• Since E [I (h (Xi ) 6= Yi )] = P (h (Xi ) 6= Yi ) = R(h), we have
E
[
R̂n(h)

]
= R(h) so R̂n(h) is an unbiased estimator of R(h).

• Moreover, for any h, by the law of large numbers, we have
R̂n(h)→ R(h) as n→∞, almost surely.

• This indicates that if n is large enough, R̂n(h) should be close
to R(h).
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Empirical risk

• As a result, in order to mimic the performance of h∗, let us use
the empirical risk minimizer (ERM)ĥ defined to minimize
R̂n(h) over all classifiers h.

• This is an easy enough task: define ĥ such ĥ (Xi ) = Yi for all
i = 1, . . . , n and h(x) = 0 if x /∈ {X1, . . . ,Xn} . We have
R̂n(ĥ) = 0, which is clearly minimal.
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Empirical risk

• The problem with this classifier is obvious: it does not
generalize outside the data.

• Rather, it predicts the label 0 for any x that is not in the data.

• Similarly, we could have predicted 1 or any combination of 0
and 1 and still get R̂n(ĥ) = 0.

• Thus, it is unlikely that E[R(ĥ)] will be small.
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Empirical risk

Remark

• Recall that R(h) = P(h(X ) 6= Y ).

• If ĥ(·) = ĥ ({(X1,Y1) , . . . , (Xn,Yn)} ; · ) is constructed from
the data, R(ĥ) denotes the conditional probability

R(ĥ) = P
(
ĥ(X ) 6= Y | (X1,Y1) , . . . , (Xn,Yn)

)
rather than P(ĥ(X ) 6= Y ).

• As a result R(ĥ) is a random variable since it depends on the
randomness of the data (X1,Y1) , . . . , (Xn,Yn).

• One way to view this is to observe that we compute the
deterministic function R(·) and then plug in the random
classifier ĥ.
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Generative vs. Discriminative approaches

• To study the behavior of R(ĥ) (in particular when n→∞), we
need certain restrictions on the distribution PX ,Y of (X ,Y ).

• Unless, there exists a PX ,Y such that ĥ does not behave well.

• There are essentially two schools: generative and discriminative
approaches.
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Generative vs. Discriminative approaches

GENERATIVE

• This approach consists in restricting the set of candidate
distributions PX ,Y .

• This is what is done in discriminant analysis where it is
assumed that the condition distributions of X given Y (there
are only two of them: one for Y = 0 and one for Y = 1 ) are
Gaussians on X = Rd (see for example [HTFo9] for an
overview of this approach).
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Generative vs. Discriminative approaches

DISCRIMINATIVE

• Rather than making assumptions directly on the distribution,
one makes assumptions on what classifiers are likely to perform
well (e.g. smooth decison boundaries).

• In turn, this allows to eliminate classifiers such as the one
described above and that does not generalize well.

• We may make assumptions on η(X ) rather than on classifiers.
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Generative vs. Discriminative approaches

• While it is important to understand both, we will focus on the
discriminative approach in this class. Specifically we are going
to assume that we are given a class H of classifiers such that
R(h) is small for some h ∈ H.
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Estimation vs. approximation

• Assume that we are given a class H in which we expect to find
a classifier that performs well.

• This class may be constructed from domain knowledge or
simply computational convenience.

• We will see some examples in the class.
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Estimation vs. approximation

• For any candidate classifier ĥn built from the data, we can
decompose its excess risk as follows:

E
(
ĥn
)

= R
(
ĥn
)
− R (h∗)

= R
(
ĥn
)
− inf

h∈H
R(h)︸ ︷︷ ︸

estimation error

+ inf
h∈H

R(h)− R (h∗)︸ ︷︷ ︸
approximation error

.
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Estimation vs. approximation

• On the one hand, estimation error accounts for the fact that
we only have a finite amount of observations and thus a partial
knowledge of the distribution PX ,Y .

• Hopefully we can drive this error to zero as n→∞.

• But this would not happen when H is too large (e.g.
overfitting).

• Therefore, we need to take H small enough.
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Estimation vs. approximation

• On the other hand, if H is too small, it is unlikely that we will
find classifier with performance close to that of h∗.

• A tradeoff between estimation and approximation can be made
by letting H = Hn grow (but not too fast) with n.

• For now, assume that H is fixed. The goal of statistical
learning theory is to understand how the estimation error drops
to zero as a function not only of n but also of H.
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Estimation vs. approximation

• For the first argument, we will use concentration inequalities
such as Hoeffding’s and Bernstein’s inequalities that allow us
to control how close the empirical risk is to the classification
error by bounding the random variable∣∣∣∣∣1n

n∑
i=1

I (h (Xi ) 6= Yi )− P(h(X ) 6= Y )

∣∣∣∣∣
with high probability.
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Estimation vs. approximation

• More generally we will be interested in results that allow to
quantify how close the average of independent and identically
distributed (i.i.d) random variables is to their common
expected value.

• This can be controlled as follows.

• Define h̄ ∈ H to be any classifier that minimizes R(·) over H
(assuming that such a classifier exist).
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Estimation vs. approximation

• Then, we have

R
(
ĥn
)
− inf

h∈H
R(h) = R

(
ĥn
)
− R(h̄)

= R̂n

(
ĥn
)
− R̂n(h̄)︸ ︷︷ ︸
≤0

+R
(
ĥn
)
− R̂n

(
ĥn
)

+ R̂n(h̄)− R(h̄)

≤
∣∣∣R̂n

(
ĥn
)
− R

(
ĥn
)∣∣∣+

∣∣∣R̂n(h̄)− R(h̄)
∣∣∣ .
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Estimation vs. approximation

• Since h̄ is deterministic, we can use a concentration inequality
to control

∣∣∣R̂n(h̄)− R(h̄)
∣∣∣.

• However,

R̂n

(
ĥn
)

=
1
n

n∑
i=1

I
(
ĥn (Xi ) 6= Yi

)
is not the average of independent random variables since ĥn

depends in a complicated manner on all of the pairs
(Xi ,Yi ) , i = 1, . . . , n.
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Estimation vs. approximation

• To overcome this limitation, we often use a blunt, but
surprisingly accurate tool: we "sup out" ĥn,∣∣∣R̂n

(
ĥn
)
− R

(
ĥn
)∣∣∣ ≤ sup

h∈H

∣∣∣R̂n

(
ĥn
)
− R

(
ĥn
)∣∣∣ .
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Estimation vs. approximation

• Controlling this supremum falls in the scope of suprema of
empirical processes that we will study in quite a bit of detail.

• Clearly the supremum is smaller as H is smaller but H should
be kept large enough to have good approximation properties.

• This is the tradeoff between approximation and estimation. It
is also know in statistics as the bias-variance tradeoff.

30


