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Abstract
Deriving convergence rates of the excess risks of machine learning methods is an important
task for theoretical statistics. A classical approach utilizes the uniform convergence of an
empirical process which is established under the control of the global complexity of the
corresponding function class. However, the global complexity may not be a sharp tool to
describe the behavior of the empirical process, and, as a result, this classical approach
only allows slower rates than n−1/2 where n denotes the sample size. To get faster and
probably optimal rates, we need a refined theoretical technique called localization analysis.
Despite its importance and usefulness, an elementary and user-friendly introduction to
the localization analysis is limited. In this paper, we attempt to give such an introduction
together with several applications.

Keywords: Convergence rate, Empirical risk minimizer, Local Rademacher complexity, Metric
entropy, Penalized estimator, Talagrand inequality

1 Introduction
Providing a theoretical understanding of machine learning procedures is useful for several
important tasks, for example, anticipating their generalization behaviors, ways to improve
them, and finding the best one among them, etc. In a decision-theoretic framework, we eval-
uate the risk of an estimator, which is the expected loss incurred by using the estimator, and
then compare it with that of the Bayes predictor that is the function minimizing the risk. The
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difference between the two risk values is referred to as the excess risk. Using several prob-
abilistic tools, we aim to find a high-probability upper bound of the excess risk, in terms of
the sample size. This sequence indexed by the sample size is called a convergence rate. By
obtaining the convergence rates of some estimators, we can compare them and choose the
best one from a theoretical perspective.

The first approach goes back to a seminal work by Vapnik and Chervonenkis [1]. They
established a worst-case upper bound of the excess risk of an empirical risk minimization esti-
mator by leveraging the uniform convergence theory of empirical processes due to Glivenko,
Cantelli, and Donsker. The uniform convergence relies on the complexity of its function class
and Vapnik and Chervonenkis [1] developed a notion of the VC dimension, which measures
the complexity of a function class suitably. Another widely used complexity measure is the
Rademacher complexity, which was used to analyze machine learning for the first time in
Koltchinskii [2], Koltchinskii and Panchenko [3], Bartlett et al. [4], Bartlett and Mendelson
[5]. The Rademacher complexity can be estimated in terms of the metric entropy via Dudely’s
entropy integral [6].

However, as we will explain, these complexity measures are not appropriate in deriving
the rates of convergence. This is mainly due to the fact that they provide global complexity,
that is, they measure the complexity of the whole function class. In this sense, the algorithmic
power of estimation procedures, which guarantees the estimator lands down to a good subset
of the function class with high probability, cannot be fully reflected in the global complexity
measures. As a result, the convergence rate derived by the global complexity measures may
be too slow and turns out to be no faster than n−1/2, where n denotes the sample size. This
“slow” n−1/2 rate is suboptimal for some statistical problems.

A localization analysis was proposed to overcome the drawback of the global complex-
ity analysis and enables us to attain faster rate than n−1/2. A main intuition is that when our
estimator is expected to be close to the Bayes predictor, the complexity of a small neighbor-
hood of the Bayes predictor may be sufficient to establish a upper bound of the excess risk.
In general, the excess risk can be bounded by a fixed point of the locally measured complex-
ity of the function class. A localized entropy integral method was introduced by Geer [7] and
the use of bracketing entropy was studied in Shen and Wong [8]. The local Rademacher com-
plexity, which can be estimated in a data-dependent fashion and so used in model selection,
was introduced in Bartlett et al. [9]. A unified and general overview of the localization anal-
ysis can be found in Koltchinskii [10]. See also Massart and Nédélec [11]. In this paper, we
provide a user-friendly tutorial for the localization analysis.

1.1 Setup
We introduce our setup for statistical inference. A reader might refer to Section 1.2 to get the
meaning of the notations used in this paper. Let (Z,A,P) be a probability space and let Ξ Let
Z1:n :=(Z1, . . . ,Zn) be a sample of i.i.d. random variables taking the values in Z with common
distribution P. Let Pn denote the corresponding empirical distribution. We denote by P the law
of the sample Z1:n and E be the corresponding expectation operator. Let Ξ be a certain class
of measurable functions from Z to a measurable space S. Let ℓ : Z×S 7→ [0,∞) be a loss
function such that we evaluate the performance of a function f at a point z ∈Z by ℓ(z, f (z)).
For notational simplicity, let ℓ◦ f : Z 7→R be a function such that ℓ◦ f (z) = ℓ(z, f (z)) for any
z ∈Z. We define the risk of f as P[ℓ◦ f ]. Let f⋆ be the Bayes predictor that is a minimizer of
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the risk, i.e.,

f⋆ = argmin
f∈Ξ

P[ℓ◦ f ].

The excess risk (with respect to the best f⋆) of a function f is defined as

E( f ) := P[ℓ◦ f ]−P[ℓ◦ f⋆] = P[ℓ◦ f ]−min
f̃∈Ξ

P[ℓ◦ f̃ ].

The aim is to find an estimator that has a small excess risk. A popular one is the empirical
risk minimization (ERM) estimator, which is obtained by minimizing the empirical risk Pn[ℓ◦
f ] over a certain function F ∈ Ξ chosen by a user for estimation, that is,

f̂n := f̂n(F) = argmin
f∈F

Pn[ℓ◦ f ] (1.1)

Another type of an estimator is the penalized ERM estimator which minimizes the sum of the
empirical risk and a certain deterministic penalty Γ : F 7→ [0,∞), that is,

f̂n,λ := f̂n,λ (F,Γ) = argmin
f∈F

{Pn[ℓ◦ f ]+λΓ( f )} , (1.2)

where λ ≥ 0 denotes a tuning parameter that controls the degree of penalization. In this paper,
we study the above two types of an estimator.

1.2 Notation
For a probability measure Q, we write Q[g] =

∫
gdQ and VarQ(g) := Q[g2]− (Q[g])2 to

denote the expectation and variance of a function g with respect to Q. For a random variable
X , we denote by EX the expectation operator with respect to the law of the random variable
X , for instance, for X ∼ Q, EX [g(X)] =

∫
g(x)dQ(x). We write ∥g∥∞ := supz∈Z |g(z)| and

∥g∥Lq(Q) := (
∫
|g(z)|qdQ(z))1/q for q > 0. For a vector valued function g = (g1, . . . ,gd)

⊤,
we write ∥g∥Lq(Q) := (∑d

j=1 ∥g j∥q
Lq(Q)

)1/q. For a natural number N ∈ N, we denote [N] :=
{1,2, . . . ,N}. For two real numbers a and b, we write a ∨ b := max{a,b} and a ∧ b :=
min{a,b}. For two positive sequences (an)n∈N and (bn)n∈N, we write an ≲ bn or bn ≳ an, if
there exists a positive constant C > 0 such that an ≤Cbn for any n ∈ N. We write an ≍ bn if
both an ≲ bn and an ≳ bn hold. We denote by 1(·) the indicator function. Absolute constants
C1,C2, . . . , may vary from place to place.

1.3 Outline
The rest of the paper is organized as follows. In Section 2, we provide the intuition as well
as the detailed technical arguments of the localization analysis for the ERM estimator. In
Section 3, we introduce several local complexity measures and some examples. The localiza-
tion analysis for the penalized ERM estimator is given in Section 4. In Section 5, we study
several concrete statistical problems with the localization analysis developed in the previous
sections.
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2 Localization analysis for fast rates
In this section, we give an outline for deriving fast rates with localization analysis for the
ERM estimator. For technical simplicity, we impose the assumption that the loss function
is bounded. Although satisfied in many applications including classification and quantile
regression, this does not cover many important problems such as regression with unbounded
outputs. But this limitation can be handled without much difficulty, as illustrated in some
examples in Section 5.
Assumption 1 (Bounded loss and functions). There exists an absolute constant B > 0 such
that ∥ℓ◦ f − ℓ◦ f⋆∥∞

≤ B.

2.1 Basic inequality and global complexity analysis
Basic inequality. The first step is to translate the randomness of the ERM estimator f̂n to
the one easier to analyze. This is attained by using the optimization optimality of f̂n such that

Pn[ℓ◦ f̂n]≤ Pn[ℓ◦ f ] for any f ∈F, (2.1)

which is called the basic inequality. From the basic inequality, when f⋆ ∈F, we have

E( f̂n) = P[ℓ◦ f̂n]−P[ℓ◦ f⋆]

= (P−Pn)[ℓ◦ f̂n − ℓ◦ f⋆]+Pn[ℓ◦ f̂n − ℓ◦ f⋆]

≤ (P−Pn)[ℓ◦ f̂n − ℓ◦ f⋆],

(2.2)

where the last line will be further bounded by analyzing the behavior of the empirical process
f 7→ (P−Pn)[ℓ ◦ f − ℓ ◦ f⋆]. When our function class does not include f⋆, we need to find a
good approximation of f̄ ∈F of f⋆. We will discuss this issue in Section 2.4.

Sub-optimality of global complexity analysis. A sub-optimal approach for finding a upper
bound of the empirical process (P−Pn)[ℓ◦ f̂n − ℓ◦ f⋆] is to employ the global bound such as

(P−Pn)[ℓ◦ f̂n − ℓ◦ f⋆]≤ sup
f∈F

(P−Pn)[ℓ◦ f − ℓ◦ f⋆].

Then we give a high probability upper bound of the right-hand side of the preceding display,
by the Talagrand inequality, or the functional Bernstein inequality, stated as the next lemma.
Lemma 2.1 (Talagrand). Let G be a class of functions on Z such that supg∈G ∥g∥∞ ≤ B for
some B > 0. Then

P

(
sup
g∈G

(P−Pn)[g]≥ 2E
[
sup
g∈G

(P−Pn)[g]
]
+

√
2t
n

σ2
P(G)+

4Bt
3n

)
≤ e−t

where we denote σ2
P(G) := supg∈GVarP(g).

There are many resources providing the proof. For example, see the proof of Theorem
3.3.9 of Giné and Nickl [12]. Here, we give a more convenient version using the AM-GM
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inequality
√
(2E[W ])(2Bt/n)≤ E[W ]+Bt/n compared with the standard form

P
(

W ≥ E[W ]+

√
2t
n

{
σ2

P(G)+2BE[W ]
}
+

Bt
3n

)
≤ e−t

due to Bousquet [13], where we denote W := supg∈G(P−Pn)[g].
We apply the Talagrand inequality in Lemma 2.1 to the class

ℓ(F− f⋆) := {ℓ◦ f − ℓ◦ f⋆ : f ∈F} .

Then since VarP(ℓ◦ f − ℓ◦ f⋆)≤ B2 for any f ∈F, we have

sup
f∈F

(P−Pn)[ℓ◦ f − ℓ◦ f⋆]≤ 2E
[

sup
f∈F

(P−Pn)[ℓ◦ f − ℓ◦ f⋆]
]
+

√
2B2t

n
+

4Bt
3n

with probability at least 1 − e−t . The second term of this upper bound is of order n−1/2.
Moreover, a usual upper bound of the expected global supremum of the empirical process is
also of order n−1/2. This is the case even for a finite function class.
Example 1 (Finite function class). Let F = { f1, . . . , fN} be a class of a finite number of
functions such that Assumption 1 holds. We let g j := ℓ ◦ f j − ℓ ◦ f⋆ for simplicity. Then we
have that for any t > 0

exp
(

tE
[

sup
f∈F

(P−Pn)[ℓ◦ f − ℓ◦ f⋆]
])

= exp
(

tE
[
max
j∈[N]

(P−Pn)[g j]
])

≤ E
[
exp
(

t max
j∈[N]

(P−Pn)[g j]
)]

≤
N

∑
j=1

E
[
exp
(
t(P−Pn)[g j]

)]
=

N

∑
j=1

n

∏
i=1

EZi

[
exp
( t

n
(P[g j]−g j(Zi))

)]
≤ N exp(t2B2/(2n)),

where the first inequality follows from Jensen’s inequality and the last inequality from Hoef-
fiding’s lemma. Taking logarithms on both sides and setting t = t∗ :=

√
2n logN/B, we

have

E
[

sup
f∈F

(P−Pn)[ℓ◦ f − ℓ◦ f⋆]
]
≤ 1

t∗
logN +

B2

2n
t∗ =

√
2B2 logN

n
.

2.2 Localization analysis
We have shown that the global complexity analysis only yields slow rates, and so we need
new theoretical tools. In this section, we introduce the general idea of localization analysis
which allows us to have fast rates.
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Heuristic of localization analysis. To give readers intuition, we provide a heuristic
explanation of the localization technique. We define a localized subset of F as

F(δ ) := { f ∈F : E( f )≤ δ}

for a positive number δ > 0. We denote the bounding term in the Talagrand inequality applied
to the localized class F(δ ) by

Un(δ , t) := 2E
[

sup
f∈F(δ )

(P−Pn)(ℓ◦ f − ℓ◦ f⋆)
]
+

√
2t
n

sup
f∈F(δ )

VarP(ℓ◦ f − ℓ◦ f⋆)+
4Bt
3n

.

Suppose that Assumption 1 holds. We first take δ1 := B so that F(δ1) =F. Then by the
Talagrand inequality, for t1 > 0, the event defined as

A1 :=

{
Z1:n ∈Zn : sup

f∈F(δ1)

(P−Pn)[ℓ◦ f − ℓ◦ f⋆]≤ δ2 :=Un(δ1, t1)

}
(2.3)

occurs with probability at least 1− e−t1 . Then on A1, it follows that E( f̂n) ≤ δ2, that is,
f̂n ∈F(δ2). On the other hand, for t2 > 0, the event defined as

A2 :=

{
Z1:n ∈Zn : sup

f∈F(δ2)

(P−Pn)[ℓ◦ f − ℓ◦ f⋆]≤ δ3 :=Un(δ2, t2)

}
(2.4)

occurs with probability at least 1− e−t2 by the Talagrand inequality. Thus, we have that

P(E( f̂n)> δ3)≤ P
(
{E( f̂n)> δ3}∩A1

)
+P(A∁

1)

≤ P(δ2 ≥ E( f̂n)> δ3)+ e−t1 ≤ P(A∁
2)+ e−t1 ≤ e−t1 + e−t2 .

That is, we have E( f̂n) ≤ δ3 with probability at least 1 − e−t1 − e−t2 . In other words, we
first show that the ERM estimaor f̂n belongs to a localized function class F(δ2), and then,
working on the localized function class, we get a high probability bound δ3 of the excess risk
smaller than δ2. By proceeding in this manner, we can obtain a sharper bound. We define the
sequence (δ j) j∈N recursively as δ j+1 :=Un(δ j, t j), then we have E( f̂n)≤ δN with probability
at least 1−∑

N
j=1 e−t j . The upper bound δN may be substantially smaller than the upper bound

δ2 obtained by the global complexity analysis. Indeed, when Un(δ , t) is a concave function of
δ , this iterative argument can be beneficial, as illustrated in Figure 1.

Fixed point method. We expressed the aforementioned iterative argument in a formal man-
ner. We will see that the resulting bound after the iteration can be expressed by a fixed point of
a certain function we will call a local complexity function. By doing so, it is easier to describe
the excess risk bound by the localization analysis. Also, we have the freedom to choose the
sequence (δ j) j∈N other than the iteratively defined one δ j+1 :=Un(δ j, t j).
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δ

δ 7→ δ

δ 7→Un(δ , t)

· · · δ1δ2δ3δ4

Fig. 1: Illustration of the iterative arguement

Definition 1. Let (δ j) j∈N be a decreasing sequence of positive numbers and (t j) j∈N be a
sequence of positive numbers. Then we say that a monotonically increasing function Ψn :
[0,∞) 7→ [0,∞) a local complexity function of F, if it satisfies

Ψn(δ j+1)≥Un(δ j, t j) for any j ∈ N.

The fixed point δ †
n of Ψn is defined as

δ
†
n := sup{δ ∈ [0,∞) : δ ≤ Ψn(δ )} . (2.5)

The next proposition states that the excess risk of f̂n is bounded above by the fixed point
with high probability.
Proposition 2.2. Suppose that Assumption 1 holds and that f⋆ ∈ F. Consider the setup in
Definition 1 and choose δ1 := B. Then for any δ > δ †

n ,

P
(
E( f̂n)> δ

)
≤ ∑

j∈N:δ j>δ

exp(−t j). (2.6)

As a particular consequence of the above, we have

P
(
E( f̂n)> δ

)
≤ log2

(
2B
δ

)
exp(−t) (2.7)

for any t > 0.
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Proof. Let J := J(δ ) := sup{ j ∈ N : δ j > δ}. Then since E( f̂n) ≤ δ1 := B by assumption,
from the union bound,

P
(
E( f̂n)> δ

)
≤ P

(
E( f̂n)> δJ

)
≤

J−1

∑
j=1

P
(

δ j+1 < E( f̂n)≤ δ j

)
.

Since it follows that E( f̂n)≤ sup f∈F(δ j)
(P−Pn)[ℓ◦ f −ℓ◦ f⋆] on the event { f̂n ∈F(δ j)}, we

have

P
(
δ j+1 < E( f̂n)≤ δ j

)
= P

(
δ j+1 < E( f̂n) and f ∈F(δ j)

)
≤ P

(
sup

f∈F(δ j)

(P−Pn)[ℓ◦ f − ℓ◦ f⋆]> δ j+1

)
.

Then by definition of δ †
n , we have δ j+1 > Ψn(δ j+1) for any j ∈ [J − 1]. Moreover, by the

definition of Ψn, we have Ψn(δ j+1) ≥ Un(δ j, t j). Therefore, by the Talagrand inequality, we
get

P
(
δ j+1 < E( f̂n)≤ δ j

)
≤ P

(
sup

f∈F(δ j)

(P−Pn)[ℓ◦ f − ℓ◦ f⋆]>Un(δ j, t j)
)
≤ e−t j ,

which completes the proof of the result (2.6)
For the second assertion (2.7), we take δ j = 2− j(2B) and t j = t for any j ∈ N. Then

since the inequality δ j = 2− j(2B) > δ is equivalent to j < log2(2B/δ ), we get the desired
result.

The next hypothetical example illustrates a situation where the localization analysis
enables us to obtain a fast rate n−1.
Example 2. Suppose that a local complexity function is given by

Ψn(δ ) = c1

{√
δ

n
+

1
n

}
for some constant c1 ∈ (0,1). Then the global complexity with δ = B leads to the bound of
order n−1/2. But using the AM-GM inequality, we have

√
δ/n ≤ δ/2+1/(2n), and thus we

can see that the fixed point δ †
n of Ψn satisfies

δ
†
n ≤ 3c1

2− c1

1
n
.

and so the localization analysis gives a fate rate n−1.

2.3 Bernstein condition: Toward sub-root local complexity
The fixed point method reveals that obtaining fast rates is closely related to a “shape” of the
local complexity function Ψn. Intuitively, the function Ψn should be concave on [0,δ ). We
introduce the Bernstein condition to get a concave Ψn.
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Definition 2. Let κ ∈ (0,1] and R > 0. We say that G is a (κ,R)-Bernstein class with respect
to a probability measure P, if

VarP[g]≤ R(P[g])κ

for every g ∈G. We call κ the Bernstein exponent.
Assumption 2 (Bernstein). The class ℓ(F− f⋆) := {ℓ◦ f −ℓ◦ f⋆ : f ∈F} is a (κ,R)-Bernstein
class with respect to a probability measure P. That is, VarP(ℓ ◦ f − ℓ ◦ f⋆) ≤ R[P[ℓ ◦ f − ℓ ◦
f⋆])κ = R(E( f ))κ for any f ∈F.
Example 3 (Bonded regression). Consider a bounded regression problem where each sample
point is a pair of input and output Zi = (Xi,Yi) with Xi ∈X and Yi ∈ [−B,B] for some B > 0,
where X denotes the input space. Assume that ∥ f∥∞ ≤ B for any f ∈F. Consider a square
loss function ℓsq such that ℓsq ◦ f (Z) = (Y − f (X))2. Then it is clear that ∥ f⋆∥∞ ≤ B. Thus, we
have {

(Y − f (X))2 − (Y − f⋆(X))2}2
= {(2Y − f (X)− f⋆(X))( f (X)− f⋆(X))}2

≤ 16B2 { f (X)− f⋆(X)}2

for any f ∈F. This implies that

VarP(ℓ◦ f − ℓ◦ f⋆)≤ P[(ℓ◦ f − ℓ◦ f⋆)2]

≤ 16B2P[( f − f⋆)2] = 16B2E( f ).

Hence ℓsq(F− f⋆) is a (1,16B2)-Bernstein class.
Next, we see the results under the Bernstein assumption.

Bernstein for the variance. Under the Bernstein assumption, we have

sup
f∈F(δ )

VarP(ℓ◦ f − ℓ◦ f⋆)≤ R sup
f∈F(δ )

E( f )κ ≤ Rδ
κ

Then by Lemma A.1 with a = (2(16/κ)κ BRt j/n)1/2, b = ((κδ/16)κ)1/2, p = 2/(2−κ) and
q = 2/κ , the variance term in Un(δ , t) can be bounded as√

2t
n

sup
f∈F(δ )

VarP(ℓ◦ f − ℓ◦ f⋆)≤
√

2Rtδ κ

n
≤ 1

16
δ +Cκ

(
Rt
n

)1/(2−κ)

(2.8)

where we let Cκ := (2−κ){2(16/κ)κ}1/(2−κ)
/2. Thus we can see that the n−1/2 order can be

improved to n−1/(2−κ), which is much faster for κ ∈ (0,1].

Bernstein for the expected supremum of the empirical process. The Bernstein assump-
tion also plays an important role in analyzing the expected supremum in Un(δ , t). We see the
detailed relationship in the next section, and now we introduce an assumption to deal with this
term. This is a simpler but easier-to-use version of the assumptions in the related literature
[9–11].
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Assumption 3 (Sub-root complexity). There exists a constant ρ ∈ (0,1] and sequences of
positive numbers (φ0,n)n∈N and (φ1,n)n∈N such that

ϕn(δ ,F) := E
[

sup
f∈F(δ )

(P−Pn)(ℓ◦ f − ℓ◦ f⋆)
]
≤ φ1,nδ

ρ/2 +φ0,n (2.9)

for any δ > 0.
Usually, the sequence (φ1,n)n∈N is not faster than n−1/2. But the sub-root dependence of

ϕn(δ ) on δ can lead to a faster rate as a similar argument used for deriving (2.8) as

φ1,nδ
ρ/2 +φ0,n ≤

1
16

δ +Cρ (φ1,n)
2/(2−ρ)+φ0,n (2.10)

with Cρ := (2 − ρ)(16/ρ)ρ/(2−ρ)/2. Thus, since 2/(2 − ρ) > 2 for ρ ∈ (0,1], the rate
(φ1,n)

2/(2−ρ) can be faster than n−1/2. Motivated by (2.10), we define the quantity φ̄n, which
represents the “effective” complexity of F, as

φ̄n(F) := (φ1,n)
2/(2−ρ)∨φ0,n (2.11)

which we call the estimation error of the function class F.
Combining (2.8) and (2.10), we know that the excess risk can be upper bounded by

max{φ̄n(F),(Rt/n)1/(2−κ) ,Bt/n} up to a constant. For details, see the proof of Theorem 2.4
given later.

2.4 Incorporating approximation error
When f⋆ /∈F, it is no longer guaranteed that Pn[ℓ ◦ f̂n] ≤ Pn[ℓ ◦ f⋆]. In this case, we use the
basic inequality in a slightly different way, namely,

E( f̂n)≤ (P−Pn)[ℓ◦ f̂n − ℓ◦ f⋆]+Pn[ℓ◦ f̂n − ℓ◦ f⋆]

≤ (P−Pn)[ℓ◦ f̂n − ℓ◦ f⋆]+Pn[ℓ◦ f̄ − ℓ◦ f⋆]

for an arbitrary function f̄ ∈F. If the function f̄ appearing in the preceding display is close
to the best function f⋆, we expect that the second term is sufficiently small. The following
proposition illustrates this.
Proposition 2.3. Let f̄ ∈F. Under Assumptions 1 and 2,

P

(
Pn[ℓ◦ f̄ − ℓ◦ f⋆]≥ (2+κ)E( f̄ )+

2−κ

2

(
2Rt
n

)1/(2−κ)

+
4Bt
3n

)
≤ e−t . (2.12)

for any t > 0

Proof. By Bernstein’s inequality, the random variable Pn[ℓ ◦ f̄ − ℓ ◦ f⋆] is larger than
2E( f̄ )+

√
2tVarP(ℓ◦ f̄ − ℓ◦ f⋆)/n+4Bt/3n with probability at most e−t for any t > 0. Under

Assumption 2, we apply Lemma A.1 with a = (2Rt/n)1/2, b = (E( f̄ )κ)1/2, p = 2/(2− κ)
and q = 2/κ to get the desired result.
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Due to the above proposition, the additional term Pn[ℓ ◦ f̄ − ℓ ◦ f⋆], which arises due to
that f⋆ /∈ F, can be bounded above by E( f̄ ) with high probability. The magnitude of the
quantity E( f̄ ) is determined by the approximation ability of F to express f⋆. We call the
“best” approximation rate inf f∈F E( f ) the approximation error of the function class F.

2.5 Excess risk bound with localization analysis
Combining the derivations above, we get our main result. For notational convenience, we
define the quantity

υn,κ,R,B(t) := max

{(
Rt logn

n

)1/(2−κ)

,
Bt logn

n

}
.

which appears in our analysis due to the use of the Talagrand inequality.
Theorem 2.4. Suppose that Assumptions 1 to 3 hold. Then, there exists a constant C1 > 0
such that the following holds

E( f̂n)≤C1 max
{

inf
f∈F

E( f ), φ̄n(F),υn,κ,R,B(t)
}
.

with probability at least 1− e−t for any t > 0.
In the above theorem, we can see that the excess risk bound of the ERM estimator f̂n

consists of the approximation error inf f∈F E( f ), estimation error φ̄n(F) and the additional
technical term υn,κ,R,B(t).

Proof of Theorem 2.4. Fix t̃ > 0. By Proposition 2.3, since f̄ is arbitrary, we have
E( f̂n) ≤ (P− Pn)[ℓ ◦ f̂n − ℓ ◦ f⋆] + an with probability at least 1 − exp(−t̃), where an :=
C2 max{inf f∈F E( f ),(Rt̃/n)1/(2−κ),Bt̃/n} for a sufficiently large constant C2 > 0.

We apply Proposition 2.2 with δ j := 2− j(2B) and t j := t̃ for j ∈N. Then 2δ j+1 = δ j. Note
that by (2.8) and (2.10) we derived before, we have

Un(δ j, t̃)≤
1
4

δ j +C1φ̄n(F)+Cκ

(
Rt̃
n

)1/(2−κ)

+
4Bt̃
3n

for some constant C1 > 0. Therefore, if we define the function Ψn as

Ψn(δ ) :=
1
2

δ +C1φ̄n(F)+Cκ

(
Rt̃
n

)1/(2−κ)

+
4Bt̃
3n

+an, (2.13)

then it becomes the local complexity function since it satisfies Ψn(δ j+1) ≥ Un(δ j, t̃) + an.
Therefore, the fixed point of Ψn satisfies

δ
†
n ≲ max

{
an, φ̄n(F),

(
Rt̃
n

)1/(2−κ)

,
Bt̃
n

}
.

11



Lastly, since we consider δ larger than the fixed point δ †
n ≳ n−1, we have log2(2B/δ )≲ logn.

So, if we take t̃ =C3t logn for sufficiently large C3 > 0, we get the desired result.

3 Local complexity measures
In this section, we introduce several tools to check Assumption 3.

3.1 Local Rademacher complexity
The Rademacher complexity of a function class G is defined as

Radn(G) := Eε1:n,Z1:n

[1
n

sup
g∈G

∣∣∣ n

∑
i=1

εig(Zi)
∣∣∣].

where ε1, . . . ,εn are n independent Rademacher random variables for which P(εi = 1) =
P(εi = −1) = 1/2. This measures the global complexity of the function class G and can be
used to attain a convergence rate. But as we mentioned in the introduction, such a derived
convergence rate may be sub-optimal.

We localize the Rademacher complexity in order to that it can measure the local complex-
ity suitably. The notion of the local Rademacher complexity was proposed by Bartlett et al.
[9].
Definition 3. The local Rademacher complexity of G for a radius δ with respect to the
localization function V : G 7→ R≥0, is defined as

Radn({g ∈G : V (g)≤ δ}) := Eε1:n,Z1:n

[1
n

sup
g∈G:V (g)≤δ

∣∣∣ n

∑
i=1

εig(Zi)
∣∣∣].

For a particular instance, we denote the local Rademacher complexity of the class ℓ(F) :=
{ℓ◦ f : f ∈F} with the localization function being V (ℓ◦ f ) = E( f ) as

locRadn(δ , ℓ,F) := Radn({ℓ◦ f ∈ ℓ(F) : E( f )≤ δ})

:= Eε1:n,Z1:n

[1
n

sup
f∈F(δ )

∣∣∣ n

∑
i=1

εi {ℓ◦ f (Zi)}
∣∣∣].

Theorem 3.1. For any δ > 0,

ϕn(δ ,F)≤ 2locRadn(δ , ℓ,F). (3.1)

Proof. The proof relies on a so-called symmetrization argument. For notational convenience,
let g f := ℓ◦ f − ℓ◦ f⋆. Let Z′

1, . . . ,Z
′
n be an independent copy of the sample Z1, . . . ,Zn. Then

we have

EZ1:n

[
sup

f∈F(δ )

(P−Pn)[g f ]
]
= EZ1:n

[
sup

f∈F(δ )

1
n

n

∑
i=1

(g f (Zi)−P[g f ])
]

12



= EZ1:n

[
sup

f∈F(δ )

1
n
EZ′

1:n

[ n

∑
i=1

(g f (Zi)−g f (Z′
i))
]]

= EZ1:n,Z′
1:n

[
sup

f∈F(δ )

1
n

n

∑
i=1

(g f (Zi)−g f (Z′
i))
]

Let ε1, . . . ,εn be n independent Rademacher random variables. Under the independence
assumption, εi(g f (Zi)−g f (Z′

i)) has the same distribution of g f (Zi)−g f (Z′
i). Therefore,

EZ1:n,Z′
1:n

[
sup

f∈F(δ )

1
n

n

∑
i=1

(g f (Zi)−g f (Z′
i))
]

≤ EZ1:n,Z′
1:n,ε1:n

[
sup

f∈F(δ )

1
n

n

∑
i=1

εi(g f (Zi)−g f (Z′
i))
]

≤ 2EZ1:n,ε1:n

[
sup

f∈F(δ )

1
n

n

∑
i=1

εig f (Zi)
]

= 2EZ1:n,ε1:n

[
sup

f∈F(δ )

1
n

n

∑
i=1

εiℓ◦ f (Zi)
]
−2EZ1:n,ε1:n

[1
n

n

∑
i=1

εiℓ◦ f⋆(Zi)
]

= 2EZ1:n,ε1:n

[
sup

f∈F(δ )

1
n

n

∑
i=1

εiℓ◦ f (Zi)
]

where the last equality follows from that E(εi) = 0. This completes the proof.

The following lemma is useful since it removes the dependence on the loss function.
Lemma 3.2. Assume that the loss function ℓ is Lipschitz, that is, there exists an absolute
constant Q > 0 such that |ℓ◦ f1(z)− ℓ◦ f2(z)| ≤ Q| f1(z)− f2(z)| for any functions f1, f2 ∈ Ξ.
Then we have

locRadn(δ , ℓ,F)≤ 2QRadn({ f ∈F : E( f )≤ δ}) (3.2)

Proof. The result directly follows from the properties of the Rademacher complexity e.g., the
fourth and fifth items in Theorem 12 of Bartlett and Mendelson [5].

Example 4 (Kernel machines). Consider the bounded regression setup in Example 3. Let K :
X×X 7→R≥0 be a non-negative definite kernel, that is, for any n∈N and any set of elements
{x1, . . . ,xn} ⊂ X, the n× n matrix (K(xi,x j))i, j∈[n] is non-negative definite. Consider the
reproducing kernel Hilbert space (RKHS) FK associated with the kernel K. This means that
f (x) = ⟨ f ⟩K(x, ·)K for any f ∈FK for an inner product ⟨·, ·⟩K defined as〈

∑
i

αiK(xi, ·),∑
j

α
′
jK(x′j, ·)

〉
K
= ∑

i
∑

j
αiα

′
jK(xi,x′j).

Let FK,1 := { f ∈FK : ∥ f∥K := ⟨ f , f ⟩K ≤ 1} be the ∥ · ∥K-norm ball in the RKHS FK with
radius 1. Then since the square loss function satisfies that |ℓsq ◦ f1(y,x)− ℓsq ◦ f2(y,x)| ≤
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4B| f1(x)− f2(x)| for any functions f1 and f2 and that P[( f − f⋆)2] = E( f ), by Lemma 3.2,
we have

locRadn(δ , ℓsq,FK,1)≤ 8BRadn({ f ∈FK,1 : P( f − f⋆)2 ≤ δ}).

Assuming that f⋆ ∈FK,1, by Theorem 41 of Mendelson [14], we have

Radn({ f ∈FK,1 : P[( f − f⋆)2]≤ δ})≤ Radn({ f ∈FK,1 : P[ f 2]≤ 4δ})

≤

(
2
n

∞

∑
j=1

min{4δ ,λ j}

)1/2

,

where (λ j) j∈N is the set of eigenvalues, arranged in a non-increasing order, of the integral
operator T such that T ( f )(·) =

∫
K(·,x) f (x)dP(x). We provide two specific cases, taken from

Wainwright [15], and the corresponding convergence rates.

• Consider X = [0,1] and a kernel K(x,x′) = min{x,x′}. Then the eigenvalues satisfy λ j ≤
C1 j−2 for some constant C1 > 0. Then since 4δ ≤ C1 j−2 holds if and only if j ≤ j∗ with
j∗ := sup{ j : j <

√
4/(C1δ )}, we have that for δ ≳ n−1

(
2
n

∞

∑
j=1

min{4δ ,λ j}

)1/2

≲
1√
n

(
j∗δ + ∑

j> j∗
j−2

)1/2

≲
δ 1/4
√

n

where the last inequality follows from that ∑ j> j∗ j−2 ≤
∫

∞

j∗+1 t−2dt ≤ ( j∗)−1 ≲ j∗δ . This
implies that Assumption 3 holds with ρ = 1/2, φ0,n = 0 and φ1,n = n−1/2 and thus we have
a convergence rate of order

√
n2/(2−ρ)

= n−2/3.
• Consider X= [−1,1] and a Gaussian kernel K(x,x′) = exp(−(x−x′)2/2). Then the eigen-

values satisfy λ j ≲ exp(−C1 j log j) for some constant C1 > 0. Then by a similar algebra as
above, we have locRadn(δ , ℓsq,FK,1) ≲

√
δ logn/n which leads to a convergence rate of

order (logn)n−1.

3.2 Entropy integral
Another convenient notion to measure the local complexity is the integral of the metric
entropy.
Definition 4. A finite collection g1, . . .gN of is called a ε-cover of G with respect to the
norm ∥ · ∥ if for any g ∈ G, there exists i ∈ [N] such that ∥ f − fi∥ ≤ ε . The corresponding
ε-covering number N(ε,G,∥ · ∥) is defied as the cardinality of the minimal ε-cover. We also
define H(ε,G,∥ · ∥) := logN(ε,G,∥ · ∥) which we call the ε-(metric) entropy. For notational
simplicity, we denote H2,P(ε,G) := H(ε,G,∥ · ∥L2(P) and H∞(ε,G) := H(ε,G,∥ · ∥∞).
Lemma 3.3. Let G be a function class such that ∥g∥∞ ≤ B and VarP[g]≤ σ2 for any g ∈ G.
Then we have

E
[
sup
g∈G

(P−Pn)[g]
]
≤ inf

ε∗>0

{
ε
∗+

16√
n

∫
σ

ε∗/2

√
H2,P(ε,G)dε +

6
n

∫ B

ε∗/2
H∞(ε,G)dε

}
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Proof. The proof is based on a so-called chaining technique. For notational simplicity, let
∥ · ∥2;= ∥ · ∥L2(P). Define, ε0,2 = σ , ε∞ = 2B and

ε j,2 := inf
{

ε > 0 : H2,P(ε,G)≤ 2 j−1} ,
ε j,∞ := inf

{
ε > 0 : H∞(ε,G)≤ 2 j−1}

for j ∈ N. Note that H2,P(ε0,2,G) = H∞(ε0,∞,G) = 0. For g ∈ G, let Π jg be a function such
that ∥Π jg−g∥∞ ≤ ε j,2 and ∥Π jg−g∥∞ ≤ ε j,∞. Them the cardinality of the set {Π jg : g ∈G}
can be bounded by N(ε j,2,G,∥ · ∥2)×N(ε j,∞,G,∥ · ∥∞) ≤ 2 j. To verify this claim, let Gj,2
(resp. Gj,∞) be a minimal ε j,2-cover (resp. ε j,∞-cover) with respect to ∥ · ∥2 (resp. ∥ · ∥∞).
Then for each g′ ∈ Gj,2 and each g′′ ∈ Gj,∞, we construct the intersection of two balls {g :
∥g− g′∥2 ≤ ε j,2}∩{g : ∥g− g′′∥∞ ≤ ε j,∞}. Then, the collection of such intersections covers
G and its cardinality is N(ε j,2,G,∥ · ∥2)×N(ε j,∞,G,∥ · ∥∞)≤ 2 j. This proves our claim.

We fix ε∗ > 0 and J∗ := inf{ j : ε j,∞ ≤ ε∗}. Then since ∥ΠJ∗g−g∥∞ ≤ εJ∗ ≤ ε∗, we have

E
[
sup
g∈G

(P−Pn)[g]
]
≤ E

[
sup
g∈G

(P−Pn)[Π0g]
]
+

J∗

∑
j=1

E
[
sup
g∈G

(P−Pn)[Π jg−Π j−1g]
]
+ ε

∗

=
J∗

∑
j=1

E
[
sup
g∈G

(P−Pn)[Π jg−Π j−1g]
]
+ ε

∗,

where the second equality follows from that Π0g can be 0 for any g ∈ G so that the set
{Π0g : g ∈ G} is a singleton. Note that the cardinality of the set {Π jg−Π j−1g : g ∈ G} is
bounded as

log
(
|{Π jg−Π j−1g : g ∈G}|

)
≤ 2 j−1 +2 j ≤ 32 j−1

Moreover,

VarP(Π jg−Π j−1g)≤ ∥Π jg−Π j−1g∥2
2

≤ (∥Π jg−g∥2 +∥g−Π j−1g∥2)
2

≤ (ε j−1,2 + ε j,2)
2 = 9ε

2
j,2

and similarly ∥Π jg − Π j−1g∥∞ ≤ 3ε j,∞. Therefore, by the well-known consequence of
Bernstein’s inequality (for example, see Lemma 3.5.12 of [12]), we have

E
[
sup
g∈G

(P−Pn)[Π jg−Π j−1g]
]
≤
√

54
n

ε2
j,2(2 j)+

3ε j,∞

2n
(2 j)

Since 2εJ∗ ≥ ε∗ and 2 j−2 < H2,P(ε j,2,G) by definition, we have

J∗

∑
j=1

ε j,22 j/2 ≤ 2
J∗

∑
j=1

ε j,2

√
H2,P(ε j,2,G)≤ 2

∫
σ

ε∗/2

√
H2,P(ε,G)dε
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and likewise, we have

J∗

∑
j=1

ε j,∞2 j ≤ 4
∫ B

ε∗/2
H∞(ε,G)dε

which completes the proof.

Theorem 3.4. Suppose that Assumptions 1 and 2 holds. Then for any δ > 0

ϕn(δ ,F)≤ inf
ε∗>0

{
ε
∗+

16√
n

∫ √
Rδ κ

ε∗/2

√
H2,P(ε, ℓ(F

δ
− f⋆))dε +

6
n

∫ B

ε∗/2
H∞(ε, ℓ(F

δ
− f⋆))dε

}

where we denote ℓ(Fδ
− f⋆) := {ℓ◦ f − ℓ◦ f⋆ : f ∈F(δ )}.

Proof. The result directly follows from Lemma 3.3 with σ2 = Rδ κ .

We state the results for some specific situations.
Corollary 3.5. Suppose that Assumption 2 holds.

1. (Parametric complexity) Assume that H∞(ε, ℓ(F
δ
− f⋆))≤ Hn log(1/ε) for any ε > 0 and any

n ∈ N for some positive sequence (Hn)n∈N with Hn ≳ 1. Then for any δ > 0,

ϕn(δ ,F)≤C1

{√
RHn logn

n
δ

κ/2 +
BHn logn

n

}
(3.3)

for some absolute constant C1 > 0. Thus, Assumption 3 is met with ρ = κ , φ0,n =

C1(BHn logn)/n and φ1,n = C1
√

R
√

Hn logn/n. This implies that the estimation error of
F is given by

φ̄n(F)≲

(
RHn logn

n

)1/(2−κ)

∨ BHn logn
n

.

2. (Nonparametric complexity) Assume that H∞(ε, ℓ(F
δ
− f⋆))≤C2ε−2ω for any ε > 0 for some

absolute constants C2 > 0 and ω ∈ (0,1). Then for any δ > 0,

ϕn(δ ,F)≤C3

{
R(1−ω)/2 1√

n
δ

κ(1−ω)/2 +Bn−1/(1+ω)

}
(3.4)

for some absolute constant C3 > 0. Thus, Assumption 3 is met with ρ = κ(1−ω), φ0,n =

C3Bn−1/(1+ω) and φ1,n = C3R(1−ω)/2/
√

n. This implies that the estimation error of F is
given by

φ̄n(F)≲

(
R(1−ω)

n

)1/(2−κ(1−ω))

∨
(

B
n

)1/(1+ω)

.
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Proof. Throughout the proof, we use the fact that H2,P ≤ H∞. For the first assertion, we take
ε∗ = n−1. Then we have

∫ √
Rδ κ

(2n)−1

√
H∞(ε, ℓ(F

δ
− f⋆))dε ≲

√
Rδ

κ/2
√

Hn logn,∫
∞

(2n)−1
H∞(ε, ℓ(F

δ
− f⋆))dε ≲ BHn logn,

which completes the proof.
For the second assertion, we take ε∗ = n−1/(1+ω). First, we have that

∫ √
Rδ κ

ε∗/2

√
H2,P(ε, ℓ(F

δ
− f⋆))dε ≤

∫ √
Rδ κ

0

√
H∞(ε, ℓ(F

δ
− f⋆))dε

≲
∫ √

Rδ κ

0
ε
−ω dε ≲ R(1−ω)/2

δ
κ(1−ω)/2.

Moreover, we have

∫ B

ε∗/2
H∞(ε, ℓ(F

δ
− f⋆))dε ≲ (ε∗)1−2ω

1(ω > 1/2)+(B)1−2ω
1(ω ≤ 1/2).

Since n−1(ε∗)1−2ω = n−(2−ω)/(1+ω) ≤ n−1/(1+ω), we get the desired result.

Example 5 (Neural networks). For a positive integer L ∈ N larger than 1 and a (L +
1)-dimensional vector of positive integers m0:L := (m0,m1, . . . ,mL) ∈ NL+1, we denote
ΘD(m0:L) :=

⊗L
l=1([−D,D]ml×ml−1 × [−D,D]ml ) for a magnitude bound D> 0. For a network

parameter θ = ((Wl ,bl))l∈[L] ∈ ΘD(m0:L), we define the deep ReLU neural network (DNN)
fθ induced by the network parameter θ as

fθ : x 7→ [WL,bL]◦ReLU◦ [WL−1,bL−1]◦ · · · ◦ReLU◦ [W1,b1]x,

where [Wl ,bl ] denotes the affine transformation [Wl ,bl ]x =Wlx+bl , and ReLU does the ele-
mentwise ReLU activation function ReLU(x) = (x j ∨0) j. Let FDNN

L,M,D,F be the class of DNNs
defined as

FDNN(L,M,D,F) :=
⋃

m0:L∈NL+1:∥m1:L∥∞≤M

{ fθ : θ ∈ ΘD(m0:L),∥ fθ∥∞ ≤ F} . (3.5)

That is, FDNN(L,M,D,F) is the class of DNNs with depth L and width M satisfying certain
bound conditions. Moreover, let FSDNN(L,M,D,F,S) be the class of sparse DNNs defined as

FSDNN(L,M,D,F,S) :=
{

fθ ∈FDNN(L,M,D,F) : S(θ)≤ S
}
, (3.6)

where S(θ) denotes the number of nonzero elements in θ . Suppose that the loss function
satisfies ∥ℓ◦ f1 − ℓ◦ f2∥∞ ≤ Q∥ f1 − f2∥∞ for any two functions f1 and f2 for some constant
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Q > 0. Then by the well-known upper bound of the ε-entropy of the neural network class,
e.g., Proposition 2 of Ohn and Kim [16], for F =FSDNN(L,M,D,F,S) we have

H∞(ε, ℓ(F− f⋆))≤ H∞(ε/Q,FSDNN(L,M,D,F,S))

≤ 2SL log(Q(L+1)(M+1)D/ε).

Then if L ≲ logn, M ≲ n, D ≲ n and F ≲ 1, we have that under Assumption 2, by the first
assertion of Corollary 3.5,

ϕn(δ ,F
SDNN(L,M,D,F,S))≲ δ

κ/2

√
S(logn)2

n
+

S(logn)2

n
.

This satisfies Assumption 3 with ρ = κ , φ0,n ≍ S(logn)2/n and φ1,n ≍
√

S(logn)/
√

n.

4 Penalized estimators
In this section, we give a theoretical result on the convergence rate of the penalized ERM esti-
mator (1.2). A key ingredient for the success of the penalized method is the appropriateness
of the penalty. Roughly, the penalty should measure the complexity of a function “rightly”, in
other words, it should not both underestimate and overestimate the complexity. For a formal
description, we define a function class restricted by the penalty Γ as

FΓ(γ) := { f ∈F : Γ( f )≤ γ}

for γ > 0. Moreover, we denote a localization of this restricted function class as

FΓ(γ;δ ) := { f ∈FΓ(γ) : E( f )≤ δ} .

We impose the following assumption on the penalty function.
Assumption 4. There exists a constant ρ ∈ (0,1] and a sequencs of positive numbers (φ̌n)n∈N
such that

ϕ̌n(δ ,γ,F) := E
[

sup
f∈FΓ(γ;δ )

(P−Pn)[ℓ◦ f − ℓ◦ f⋆]
]
≤ φ̌1,n(γ)

(2−ρ)/2
δ

ρ/2 + φ̌0,nγ

for any γ > 0 and any δ > 0.
The above assumption implies that the complexity of the function class FΓ(γ) should be

proportional to γ(2−ρ)/2 and this is the right order of the penalty.
Theorem 4.1. Suppose that Assumptions 1, 2 and 4 hold. Moreover, assume that the tuning
parameter λ satisfies

λ ≥C1λn with λn := (φ̌1,n)
2/(2−ρ)+ φ̌0,n (4.1)
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for a sufficiently large C1 > 0. Then there exists a constant C2 > 0 such that the following
holds

E( f̂n,λ )≤C2 max
{

inf
f∈F

{E( f )+λΓ( f )},νn,κ,R,B(t)
}

(4.2)

with probability at least 1− e−t for any t > 0.
The estimation error of f̂n,λ is represented by λΓ( f ), while by φ̄n(F) in Theorem 2.4.

This reflects the fact the penalty controls the complexity of the resulting estimator.

Proof of Theorem 4.1. We start with the basic inequality for the penalized ERM such that

Pn[ℓ◦ f̂n,λ ]+λΓ( f̂n,λ )≤ Pn[ℓ◦ f ]+λΓ( f )

for any f ∈F. By this, we have

E( f̂n,λ ) = P[ℓ◦ f̂n,λ ]−P[ℓ◦ f⋆]

= (P−Pn)[ℓ◦ f̂n,λ − ℓ◦ f⋆]+Pn[ℓ◦ f̂n,λ − ℓ◦ f⋆]

≤ (P−Pn)[ℓ◦ f̂n,λ − ℓ◦ f⋆]−λΓ( f̂n,λ )+Pn[ℓ◦ f̄ − ℓ◦ f⋆]+λΓ( f̄ )

for any f̄ ∈F. Then by Proposition 2.3, there is a sufficiently large constant C3 > 0 such that

Pn[ℓ◦ f̄ − ℓ◦ f⋆]+λΓ( f̄ )≥wn( f̄ ) :=C3

{
E( f̄ )+λΓ( f̄ )+(Rt̃/n)1/(2−κ)+Bt̃/n

}
with probability at least 1−e−t̃ for any t̃ > 0 and any f̄ ∈F. Since f̄ is arbitrary, for the event

A0 :=
{

Z1:n ∈Zn : E( f̂n,λ )≤ (P−Pn)[ℓ◦ f̂n,λ − ℓ◦ f⋆]−λΓ( f̂n,λ )+ inf
f∈F

wn( f )
}

we have P(A0)≥ 1− e−t̃ . For simplicity, let wn := inf f∈Fwn( f ).
It remains to bound (P−Pn)[ℓ◦ f̂n,λ −ℓ◦ f⋆]−λΓ( f̂n,λ ). We divide the function space F

into shells by the value of the penalty as

Fm := { f ∈F : γn,m ≤ Γ( f )< γn,m+1}

with γn,m := 2mwn/λ for m ∈ N and γn,0 := 0 and then define the event

Bm := {Z1:n ∈Zn : f̂n,λ ∈Fm}.

On the event A0 ∩Bm, it is clear that

E( f̂n,λ )≤ (P−Pn)[ℓ◦ f̂n,λ − ℓ◦ f⋆]+wn −λγn,m.
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But since |(P−Pn)[ℓ◦ f̂n,λ −ℓ◦ f⋆]| ≤ 2B by assumption, for an integer m such that m>M :=
log2(2Bn/λ ) and a positive number δ such that δ ≥C2wn, we have that E( f̂n,λ ) ≤ δ on the
event A0 ∩Bm. Thus we have

P
(
{E( f̂n,λ )> δ}∩A0

)
≤

M

∑
m=0

P
(
{E( f̂n,λ )> δ}∩A0 ∩Bm

)
.

Let δ j := 2− j(2B) and J := sup{ j ∈ N : δ j > δ}. We further peel each event as

P
(
{E( f̂n,λ )> δ}∩A0 ∩Bm

)
≤

J

∑
j=1

P
(
{δ j+1 < E( f̂n,λ )≤ δ j}∩A0 ∩Bm

)
≤

J

∑
j=1

P
(

sup
f∈Fm(δ j)

(P−Pn)[g f ]> δ j+1 +λγn,m −wn

)
,

where we denote g f := ℓ ◦ f − ℓ ◦ f⋆. Each probability in the summation in the last line is
bounded by e−t if δ is larger than the fixed point of a local complexity function Ψn,m which
satisfies

Ψn,m(δ j+1)+λγn,m −wn

≥Un,m(δ j, t̃) := 2E
[

sup
f∈Fm(δ j)

(P−Pn)[g f ]
]
+

√
2t̃
n

sup
f∈Fm(δ j)

Var(g f )+
4Bt̃
3n

.

We will show that the function Ψn,m defined as

Ψn,m(δ ) :=
1
2

δ +3wn +C4

(
Rt̃
n

)1/(2−κ)

+
4Bt̃
3n

can be such a function for a sufficiently large constant C4 > 0. Using a similar argument used
to derive (2.8) and (2.10), we have

Un,m(δ j, t̃)≤
1
4

δ +C5γn,m+1λn +C4

(
Rt̃
n

)1/(2−κ)

+
4Bt̃
3n

for some constant C5 > 0. We set the constant C1 > 0 in the definition of λn to be larger than
2C5, by assumption we have λγn,m ≥C5γn,m+1λn for m ∈ [M]. Moreover, since γn,1 = 2wn/λ ,
we have 2wn ≥C5γn,1λn for m = 0. Therefore,

Ψn,m(δ j+1)+λγn,m −wn ≥
1
2

δ j +C5γn,m+1λn +C4

(
Rt̃
n

)1/(2−κ)

+
4Bt̃
3n

.
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for any j ∈ N such that δ j is larger than the fixed point δ †
n,m of Ψn,m and for any m =

0,1, . . . ,M, which proves our claim. It is easy to see that the fixed point of Ψn,m satisfies

δ
†
n,m ≲wn +

Bt̃
n
+

(
Rt̃
n

)1/(2−κ)

.

Lastly, note that M + 1 ≤ log2(4Bn/λ ) ≲ logn and that, as in the proof of Theorem 2.4,
J ≲ logn. Therefore, we get the desired result by taking t̃ = C6t logn for a sufficiently large
C6 > 0.

Example 6 (Sparsity penalty for neural networks). Consider F =FDNN(L,M,D,F) which
is the class of DNNs defined in (3.5). Assume that Assumption 2 holds and let Γ( fθ ) =
S(θ)1/(2−κ), where S(θ) is the number of nonzero elements in θ . Then since Γ( fθ ) ≤ γ is
equivalent to S(θ)≤ γ2−κ , we have

FΓ(γ) =FSDNN(L,M,D,F,γ2−κ).

Then by the same argument as in Example 5, if L ≲ logn, M ≲ n, D ≲ n and F ≲ 1, we have
that

ϕ̌n(δ ,γ,F
DNN(L,M,D,F))≲

√
(logn)2

n
(γ)(2−κ)/2

δ
κ/2 + γ

2−κ (logn)2

n
.

From a function approximation perspective, it suffices to consider the sparsity such that
S(θ)≤ γ2−κ ≤ n. In this regime, the above bound can be further bounded as√

(logn)2

n
(γ)(2−κ)/2

δ
κ/2 + γ(logn)2n−1/(2−κ).

This satisfies Assumption 4 with ρ = κ , φ̌1,n ≍ logn/
√

n and φ̌0,n ≍ (logn)2n−1/(2−κ)

5 Applications

5.1 Classification
In this subsection, we consider a binary classification problem where each sample point is
given by Zi = (Xi,Yi) with binary label Yi ∈ {−1,1} and input Xi ∈ [0,1]d . Assume that Ξ is a
class of real-valued functions on [0,1]d with sup f∈Ξ ∥ f∥∞ ≤F for some F > 0. When we use a
function f ∈Ξ for prediction, the label Y associated with an input X is estimated by the sign of
f (X). The performance of f is usually evaluated by the misclassification error P(Y f (X)< 0),
which is the expectation of the 0-1 loss ℓ0/1 such that ℓ0/1 ◦ f (Y,X) = 1(Y f (X) < 0). A
natural approach to finding a good estimator is optimizing the empirical risk Pn[ℓ0/1◦ f ] given
with the 0-1 loss. However, this optimization is computationally infeasible due to the discrete
nature of the 0-1 loss.

In practice, computationally feasible surrogate losses can used to overcome the com-
putational issue. They fall into a class of margin-based loss functions, which are given by
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ℓ◦ f (X ,Y ) = ℓ(Y f (X)). Examples include the logistic loss ℓlogit : z 7→ log(1+exp(−z)), expo-
nential loss ℓexp : z 7→ exp(−z) and the hinge loss ℓhinge : z 7→ (1− z)∨ 0. We may use the
(penalized) ERM estimator that minimizes the empirical risk given with such a surrogate loss.
Then we can provide a convergence rate of the excess risk defined with the surrogate loss we
use. But typically, a theoretically interesting quantity is the 0-1 excess risk, which is defined
as

E0/1( f ) := P[1(Y f (X)< 0)]−min
f̃∈Ξ

P[1(Y f̃ (X)< 0)]

for f ∈ Ξ. Motivated by this, the relationship between the excess risks with respect to the 0-
1 and surrogate loss was investigated. Zhang [17], Bartlett et al. [18] proved that when the
surrogate loss function is strictly convex, the following calibration inequality

E0/1( f )≤ Escvx( f )1/2

holds, where Escvx denotes the excess risk with respect to a strongly convex loss. This inequal-
ity is also sharp, that is, the exponent cannot be larger than the current one 1/2, see the
discussion below Theorem 2.2 of Zhang et al. [19]. The calibration inequality implies that
even if we have a fate convergence rate of Escvx( f ), we are not able to get a faster rate of the
0-1 excess risk E0/1( f ) than n−1/2. In contrast, the hinge loss is promising since it allows a
shaper calibration inequality

E0/1( f )≤ Ehinge( f )

where Ehinge denotes the excess risk with respect to the hinge loss. A problem of the hinge loss
is that it does not satisfy the Bernstein assumption in general. However, there is a reasonable
assumption that overcome this issue.
Assumption 5 (Tsybakov’s noise condition). The conditional class probability function
η(X) := P(Y = 1|X) satisfies

P(|η(X)−1/2| ≤ t)≤C1tα

for any t > 0 for some absolute constants α > 0 and C1 > 0.
The noise condition was introduced by Mammen and Tsybakov [20], Tsybakov [21].

This is related to the behavior of the distribution of the input X near the decision boundary
{X ∈X : η(X) = 1/2}. The exponent α determines the “easiness” of the problem. A large
α means that there is a small mass near the decision boundary, and so the chance that we
encounter data points difficult to classify is low.

Under the noise condition, the hinge loss leads to a Bernstein class.
Lemma 5.1 (Lemma 6.1 of Steinwart and Scovel [22]). Under Assumption 5 with α > 0, the
class ℓhinge(Ξ− f⋆) := {ℓhinge ◦ f − ℓhinge ◦ f⋆ : f ∈ Ξ} is a (α/(α +1),R)-Bernstein class for
some absolute constant R > 0, where f⋆ = argmin f∈ΞP[ℓhinge ◦ f ].

Thanks to the variance bound in the above lemma, we can attain a fast convergence rate for
the (penalized) ERM estimator with the hinge loss. Several specific examples were studied in
the literature, for example, the support vector machine [22] and deep neural network classifier
[23].
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Theorem 5.2. Consider the classification setup described in this subsection with Assump-
tion 5 being met. Then we have the following.

1. Suppose that Assumption 3 holds. Then the ERM estimator with the hinge loss satisfies

E0/1( f̂n)≤C1 max

{
inf
f∈F

E( f ), φ̄n(F),

(
t logn

n

)(α+1)/(α+2)
}

with probability at least 1− e−t for any t > 0 for some absolute constant C1 > 0.
2. Suppose that Assumption 4 holds and the tuning parameter satisfoes (4.1). Then the

penalized ERM estimator with the hinge loss satisfies

E0/1( f̂n,λ )≤C2 max

{
inf
f∈F

{E( f )+λΓ( f )},
(

t logn
n

)(α+1)/(α+2)
}

with probability at least 1− e−t for any t > 0 for some absolute constant C2 > 0.

Example 7 (Neural network classifier). We consider a deep neural network classifier that
minimizes the penalized hinge empirical risk plus the sparsity-inducing penalty as

f̂ DNN
n,λn

= argmin
fθ∈FDNN

n

{
Pn[ℓhinge ◦ fθ ]+λnS(θ)(α+1)/(α+2)

}

with λn :=C1(logn)2n−(α+1)/(α+2) for a sufficiently large constant C1 > 0, where we denote
FDNN

n := FDNN(L ≍ logn,M ≍ n,D ≍ n,F ≲ 1). To the best of our knowledge, such an
estimator has not been studied yet. The ERM procedure with the hinge loss and a deep neural
network model was extensively studied by [23]. Assume that η is β -Hölder continuous. Then
there exists a positive constant C2 > 0 such that

E0/1( f̂ DNN
n,λn

)≤C2 max

{
n−

β (α+1)
β (α+2)+d (logn)(α+1)( β

d ∨
2

α+2 ),

(
t logn

n

) α+1
α+2
}

holds with probability at least 1− e−t for any t > 0. This rate is minimax optimal up to a
logarithmic factor [24].

To prove this, we apply Theorem 4.1 with κ = α/(α + 1). Since Γ( fθ ) =
S(θ)(α+1)/(α+2) = S(θ)1/(2−κ) ≤ γ is equivalent to S(θ) ≤ γ2−κ , by the same argu-
ment as Example 6, we know that Assumption 4 holds with ρ = κ = α/(α + 1).
Also by Example 6, φ̌0,n = (logn)2n−1/(2−κ) = (logn)2n−(α+1)/(α+2) and (φ̌1,n)

2/(2−ρ) ≍
((logn)2/n)−(α+1)/(α+2). Thus, the tuning parameter condition (4.1) is met. By a similar
argument as the proof of Theorem 3.3 of Kim et al. [23], which utilizes the approximation
power of the neural network architecture, we have

inf
fθ∈FDNN

n

{Ehinge( fθ )+λnS(θ)(α+1)/(α+2)}

23



≤ inf
fθ∈FDNN

n

{
∥ fθ −η∥α+1

∞ +λnS(θ)(α+1)/(α+2)
}

≲ min
S∈N:S≲n

{
(S/ logn)−β (α+1)/d +λnS(α+1)/(α+2)

}
≤ (logn)(α+1)( β

d ∨
2

α+2 ) min
S∈N:S≲n

{
S−β (α+1)/d +(S/n)(α+1)/(α+2)

}
We take Sn ≍ nd/(β (α+2)+d) that attains the balance S−β (α+1)/d

n ≍ (Sn/n)(α+1)/(α+2). Thus,
the above display can be bounded by

n−
β (α+1)

β (α+2)+d (logn)(α+1)( β

d ∨
2

α+2 ).

which completes the proof.

5.2 Optimal transport map estimation
Let P and Q be two probability measures on Ω ⊂ Rd . For a transport map T : Ω 7→ Ω, the
pushforward measure T♯P of P through T is a measure satisfying T#P(E) = P(T−1

# (E)) for
any Borel measurable subset E ⊂ Ω. The optimal transport map T⋆ is the transport map from
P to Q that solves the Monge problem

T⋆ = argmin
T :T#P=Q

∫
|T (x)− x|2dP(x).

The Monge problem can be solved indirectly by solving the so-called semi-dual problem.
Let L1(P) := { f :

∫
| f |dP < ∞}. For a potential f ∈ L1(P), define the semi-dual objective

function

S( f ) := P[ f ]+Q[ f ∗],

where f ∗ denotes the convex conjugate of f defined as f ∗(y) = supx∈Rd{x⊤y− f (x)}. Then
Brenier’s theorem [25] states that the optimal transport map is given by

T ⋆ =∇ f⋆ with f⋆ = argmin
f∈L1(P)

S( f )

and the optimal potential f⋆ is a convex function.
Suppose that we have the two-sample data X1:n := (X1, . . . ,Xn) and Y1:n = (Y1, . . . ,Yn)

which are n i.i.d. random variables following P and Q, respectively. We assume that X1:n and
Y1:n are independent. Our aim is to estimate the optimal transport map from P to Q based on
the data X1:n and Y1:n. Motivated by Brenier’s theorem, our strategy is to first obtain the ERM
estimator of the optimal potential such that

f̂n = argmin
f∈F

Sn( f ) := Pn[ f ]+Qn[ f ∗]
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for some function class F ⊂ L1(P) satisfying the assumption given below, and estimate T⋆
by its gradient T̂n :=∇ f̂n.
Assumption 6. The optimal transport map f⋆ and the function class F ⊂ L1(P) satisfy the
following.

1. There exists a constant F > 0 such that ∥ f⋆∥∨ sup f∈F ∥ f∥∞ ≤ F .
2. Any member f in F is twice continuously differentiable on Rd and satisfies

1
2

I ⪯∇2 f (x)⪯ 2I

for any x ∈ Ω, where I denotes the identity matrix and A ⪯ B means that B−A is non-
negative definite.

Lemma 5.3. Under Assumption 6, we have

1
4
∥∇ f −∇ f⋆∥2

L2(P) ≤ S( f )−S( f⋆)≤ 2∥∇ f −∇ f⋆∥2
L2(P)

for any f ∈F.

Proof. See Theorem 3.1 of [26].

To guarantee the Bernstein condition, we need some additional conditions on the
probability measures P and Q.
Definition 5. A probability measure P satisfies the Poincaré inequality if there exists an
absolute constant K > 0 such that

VarP( f )≤ K∥∇ f∥2
L2(P)

for every function f : Rd 7→ R with P[ f 2]< ∞.
Assumption 7. Both P and Q satisfy the Poincaré inequality.
Lemma 5.4. Under Assumptions 6 and 7, the function class {( f − f⋆)+( f ∗− f ∗⋆ ) : f ∈F}
is a (1,16K)-Bernstain class.

Proof. By Assumption 7 and Lemma 5.3,

Var( f − f⋆)≤ K∥∇ f −∇ f⋆∥2
L2(P) ≤ 4K{S( f )−S( f⋆)}.

Define S∗(g) := Q[g] +P[g∗], that is, S∗ is the semi-dual objective function which inter-
changes the roles of P and Q. By the properties of the convex conjugate (c.f. Lemma A.9 of
[26]), f ∗ satisfies Assumption 6. Hence, by Assumption 7 and Lemma 5.3 again

Var( f ∗− f ∗⋆ )≤ K∥∇ f ∗−∇ f ∗⋆ ∥2
L2(Q) ≤ 4K{S∗( f ∗)−S∗( f ∗⋆ )}.

Since ( f ∗)∗ = f for all convex and lower semicontinuous function f , we have S( f ) =S∗( f ∗).
This together with the simple fact Var(X+Y )≤ 2Var(X)+2Var(Y ), completes the proof.

Thanks to the above lemma, Theorem 2.4 gives the following result.
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Theorem 5.5. Suppose that Assumptions 3, 6 and 7 hold. Then the transport map estimator
T̂n :=∇ f̂n with the ERM f̂n satisfies

∥T̂n −T⋆∥2
L2(P) ≤C1 max

{
inf
f∈F

∥∇ f −T⋆∥2
L2(P), φ̄n(F),

t logn
n

}
with probability at least 1− e−t for any t > 0 for some absolute constant C1 > 0.

5.3 Density estimation
We introduce our density estimation setup and additional notation. Suppose that we have the
sample X1:n = (X1, . . . ,Xn) which are X-valued i.i.d. random variables generated from the
distribution with density f⋆ with respect to the reference measure µ , that is, f⋆ = dP/dµ ,
where X is a compact subset of Rd . Let Ξ be the class of densities on X. We assume that the
true density function satisfies the following.
Assumption 8. There exists a constant c0 > 0 such that f⋆(x)≥ c0 for all x ∈X.

Let Hel and KL denote the Hellinger distance and Kullback-Leibler divergence, respec-
tively, that is, for two densities f1 and f2,

Hel2( f1, f2) :=
1
2

∫
X
(
√

f1 −
√

f2)
2dµ,

KL( f1, f2) :=
∫
X

log
(

f1

f2

)
f1dµ.

We estimate the true density function by the maximum likelihood estimator (MLE) given
as

f̂n = argmin
f∈F

Pn[− log f ]

for some class of densities F⊂ Ξ which satisfies sup f∈Ξ ∥ f∥∞ ≤ F for some F > 0. This can
be viewed as the ERM with the negative log loss ℓ− log : x 7→ − log(z). But we cannot apply
Theorem 2.4 or Theorem 4.1 since ℓ− log ◦ f is not uniformly bounded, as ℓ− log ◦ f (x) diverges
when f (x) is close to 0.

A classical idea to overcome this issue is to consider the transformed function class

H :=H(F) =

{
h f :=

√
f + f⋆
2 f⋆

: f ∈F

}
.

Then, under Assumption 8, since every f in F is bounded by F , we have ∥h f ∥∞ ≤√
(F + c0)/2c0 and h f (x) ≥

√
1/2 for any x ∈X. Then the class {ℓ− log ◦ h f − ℓ− log ◦ h f⋆ :

f ∈F} is a uniformly bounded class. Furthermore, it turns out that this is a (1,4)-Bernstein
class. To see this, note that

VarP(ℓ− log ◦h f − ℓ− log ◦h f⋆)≤ P[(ℓ− log ◦h f − ℓ− log ◦h f⋆)
2]

≤ 2P[(h f −h f⋆)
2],
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where the second inequality follows from that the negative log function is
√

2-Lipschiz on
the interval [

√
1/2,∞). Then by the well-known relationship KL( f1, f2)≥ 2Hel2( f1, f2), we

further have

P[(h−h f⋆)
2] = 2Hel2

(
f⋆,

f + f⋆
2

)
≤ KL

(
f⋆,

f + f⋆
2

)
= 2P[ℓ− log ◦h f − ℓ− log ◦h f⋆ ],

where the last equality follows from that h f⋆ = 1.
But we still have something to check to apply Theorem 2.4. First, we need the following

basic inequality

Hel2
(

f̂n + f⋆
2

, f⋆

)
≤ (Pn −P)[ℓ− log ◦h f − ℓ− log ◦h f⋆ ]

which replaces the standard basic inequality (2.2). The proof of the above can be found in
Lemma 4.1 of [7]. Thus, we attain a high-probability upper bound of the excess risk EH( f ) :=
E(h f ) := P[ℓ− log ◦ h f − ℓ− log ◦ h f⋆ ] for the transformed function class. Since we have, by
Lemma 4.2 of [7],

Hel2 ( f , f⋆)≤ 16Hel2
(

f⋆,
f + f⋆

2

)
≤ 8EH( f ),

such a upper bound automatically implies a high-probability upper bound of the squared
Hellinger distance Hel2( f̂n, f⋆). Combining these results, we get the next theorem.
Theorem 5.6. Suppose that Assumption 8 holds and that H satisfies Assumption 3. Then the
MLE satisfies

Hel2( f̂n, f⋆)≤C1 max
{

inf
f∈F

EH( f ), φ̄n(H(F)),
t logn

n

}
with probability at least 1− e−t for any t > 0 for some absolute constant C1 > 0.
Example 8 (Log density model). We consider a density function of the form

fθ (x) = exp(bθ (x)−A(θ)), with A(θ) = log
(∫

X
exp(bθ (x))dµ(x)

)
for some function bθ : X 7→ R parameterized by θ ∈ Θ where Θ denotes a parameter space
and let FΘ := { fθ : θ ∈ Θ}. That is, we model the log density function by a certain (non)-
parametric model. Then for any θ1 ∈ Θ and θ2 ∈ Θ, we have∥∥∥∥∥− log

(√
fθ1 + f⋆

2 f⋆

)
+ log

(√
fθ2 + f⋆

2 f⋆

)∥∥∥∥∥
∞

=
1
2

∥∥− log
(

fθ1 + f⋆
)
+ log

(
fθ2 + f⋆

)∥∥
∞

≤ 1
2

∥∥− log( fθ1)+ log
(

fθ2

)∥∥
∞
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≤
∥∥bθ1 −bθ2

∥∥
∞
,

where the first inequality follows from the inequality log(x+b)− log(x+a)> log(b)− log(a)
for any x > 0 when b > a and the second inequality follows from that

|A(θ1)−A(θ2)|=
∣∣∣∣log

(∫
X exp(bθ1(x))dµ(x)∫
X exp(bθ2(x))dµ(x)

)∣∣∣∣≤ ∥bθ1 −bθ2∥∞.

This implies that

H∞(ε,H(FΘ))≤ H∞(ε,{bθ : θ ∈ Θ}).

Hence, we can bound the estimation error in terms of the metric entropy of the class {bθ : θ ∈
Θ}. For the approximation error, we may employ the fact that

EH( fθ ) =
1
2
P

[
− log

(
fθ + f⋆

2

)
+ log( f⋆)

]
≤=

1
2
P

[
− log

(
fθ + f⋆

2

)
+ log( f⋆)

]
≤ 1

4
P [− log( fθ )+ log( f⋆)]

≤ 1
4
∥ log( fθ )− log( f⋆)∥∞ ≤ 1

2
∥bθ −b⋆∥∞

and find a good approximation bθ of b⋆ := log( f⋆).

5.4 Sub-Gaussian regression
In this subsection, we consider a nonparametric regression problem where we can access the
sample Z1:n = (Z1, . . . ,Zn) where each Zi is generated as

Yi = f⋆(Xi)+ζi, Xi
iid∼ PX

where PX is a distribution on a compact subset of [0,1]d and ζ1, . . . ,ζn are i.i.d. mean-zero
errors which are independent to X1, . . . ,Xn. We assume that εi is a sub-Gaussian random

variable with parameter σζ > 0, i.e., P[euζi ]≤ eu2σ2
ζ
/2 for any u ∈R. Assume that Ξ is a class

of real-valued functions on [0,1]d with sup f∈Ξ ∥ f∥∞ ≤ F for some F > 0. We consider the
square loss function ℓsq such that ℓsq ◦ f (Y,X) = (Y − f (X))2. The corresponding excess risk
is given by

E( f ) = P[(Y − f (X))2]−P[(Y − f⋆(X))2]

= ∥ f − f⋆∥2
L2(PX )

:=
∫

| f (X)− f⋆(X)|2dPX (x).

A technical problem here is that ℓsq ◦ f − ℓsq ◦ f⋆ is not bounded, and thus the theoretical
results cannot be applied. But sub-Gaussian random variables have very thin tails, so we can
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deal with them as “almost bounded” random variables. A truncation argument used in [16, 27]
utilizes this idea.
Theorem 5.7. Consider the sub-Gaussian regression setup described in this subsection. Then
we have the following.

1. Suppose that Assumption 3 holds. Then there exists a constant C1 > 0 such that

∥ f̂n − f⋆∥2
L2(PX )

≤C1 max
{

inf
f∈F

E( f ), φ̄n(F),
t(logn)3

n

}
with probability at least 1− e−t for any t > 0.

2. Suppose that Assumption 4 holds and the tuning parameter satisfies (4.1). Then there exists
a constant C2 > 0 such that

∥ f̂n,λ − f⋆∥2
L2(PX )

≤C3 max
{

inf
f∈F

{E( f )+λΓ( f )}, t(logn)3

n

}
with probability at least 1− e−t for any t > 0.

Proof. We only prove the case of the penalized ERM. The ERM case is can be proved sim-
ilarly. For a real-valued random variable Y , we define Y≤B := sign(Y )(|Y | ∧B), which is a
truncation of Y at level B> 0. Furthermore, we let ℓ≤B

sq ◦ f denote the square loss with the trun-
cated input as ℓ≤B

sq ◦ f (Y,X) = (Y≤B − f (X))2 and let f≤B
⋆ be the minimizer of the truncated

risk such that

f≤B
⋆ = argmin

f∈Ξ

P[ℓ≤B
sq ◦ f ].

Note that f≤B
⋆ (X) = P(Y≤B|X) where P(·|X) denotes the conditional expectation given X .

For notational convenience, we write g f := ℓsq ◦ f − ℓsq ◦ f⋆ and g≤B
f := ℓ≤B

sq ◦ f − ℓ≤B
sq ◦ f≤B

⋆ .
Then for any f ∈F, we have∣∣∣g f (Y,X)−g≤B

f (Y,X)
∣∣∣≤ ∣∣2{ f (X)− f⋆(X)}(Y≤B −Y )+( f≤B

⋆ (X)−Y≤B)2 − ( f⋆(X)−Y≤B)2∣∣
≤ 4F

∣∣Y≤B −Y
∣∣+ ∣∣ f≤B

⋆ (X)− f⋆(X)
∣∣ ∣∣ f≤B

⋆ (X)+ f⋆(X)−2Y≤B∣∣
≤ 4F |Y |1(|Y |> B)+2(B+F)| f≤B

⋆ (X)− f⋆(X)|.

We denote the two terms in the last line as

W1 := 4F |Y |1(|Y |> B), W2 := 2(B+F)| f≤B
⋆ (X)− f⋆(X)|.

Note that W1 and W2 do not depend on the choice of f . With the truncation error W :=W1+W2,
we can decompose the excess risk as

E( f̂n,λ )≤ P[W ]+Pn[g≤B
f̂n,λ

]

≤ P[W ]+ (P−Pn)[g≤B
f̂n,λ

]+Pn[W ]+Pn[g f̂n,λ
]
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≤ P[W ]+Pn[W ]+ (P−Pn)[g≤B
f̂n,λ

]−λΓ( f̂n,λ )+Pn[g f̄ ]+λΓ( f̄ )

≤ P[W ]+2Pn[W ]+ (P−Pn)[g≤B
f̂n,λ

]−λΓ( f̂n,λ )+Pn[g≤B
f̄ ]+λΓ( f̄ )

for any f̄ ∈ F, where the last inequality follows from the basic inequality for the penalized
ERM. Hence, if we succeed in bounding P[W ]+2Pn[W ], we get the desired result by applying
Theorem 4.1 to the rest of the terms, which leads to the bound

inf
f∈F

{
P[g≤B

f ]+λΓ( f )
}
∨ B2t logn

n
. (5.1)

This is due to that the class {g≤B
f : f ∈F} is a bounded (1,16B2)-Bernstein class as shown

in Example 3. Now, we take B = Bn := C3 logn for a sufficiently large C3 > 0. Then by
Lemma A.2, we have Pn[W1]≲ t/n and Pn[W2]≲Bt/n≍ t logn/n with probability at least 1−
2e−t . Lastly, we need to handle the term P[g≤B

f ] term in (5.1) associated with the artificially
introduced function f≤B

⋆ . But we will show that this term is very close to E( f ) for any f . Note
that

|P[g≤B
f ]−E( f )| ≤ (4F)2P[( f⋆− f≤B

⋆ )2]

= (4F)2P[|P(Y |X)−P(Y≤B|X)|2]
≤ (4F)2P[(Y −Y≤B)2],

where the last inequality follows from Jensen’s inequality. Furthermore, since Y is sub-
Gaussian and B ≍ logn, we have

P[(Y −Y≤B)2] = P[|Y |21(|Y |> B)]≤ 2P[exp(2Y −B)]≲ n−1,

which completes the proof.

Appendix A Technical lemmas
Lemma A.1. Let p > 1 and q > 1 be conjugate indices such that 1/p+ 1/q = 1. Then we
have

ab ≤ ap

p
+

bq

q

for any a ≥ 0 and b ≥ 0.

Proof. See Lemma 7.1 of Steinwart and Christmann [28].

Lemma A.2. Let Y1, . . . ,Yn be i.i.d. sub-Gaussian random variables. Let F > 0 and Wi :=
F |Yi|1(|Yi|> B̃ logn) for i∈ [n] for a sufficiently large B̃> 0. Then there exist constants C1 > 0
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such that

P
(1

n

n

∑
i=1

Wi ≥C1
t
n

)
≤ e−t .

Proof. Since Y is sub-Gaussian, by Proposition 2.5.2 of Vershynin [29], there is a constant
C2 > 0 such that E[exp(Y 2/C2

2)]≤ 2. Hence, taking C3 =C2F , we have E[exp(W 2/C2
3)]≤ 2

which implies W is sub-Gaussian. Thus, by Bernstein’s inequality, there exists a constant
C4 > 0 such that

P

(
1
n

n

∑
i=1

Wi ≥ P[W1]+

√
2t
n
Var(W1)+C4

t
n

)
≤ e−t .

Since 1(|Y1|> B2)≤ exp((|Y1|−B2)/(2C2
2)), and |Y |/(2C2

2)≤ exp(|Y |/(2C2
2)) we have

P[W1]≤ FP[exp(Y 2/C2
2 − B̃ logn/(2C2

2)]≤ 2F exp(−B̃ logn/(2C2
2))

So if B̃ is larger than 2C2
2 , the last display is less than n−1 up to a constant. By a similar

argument, we can see that P[W 2
1 ]≲ n−1, which completes the proof.
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