
Review: Natural Posterior Network: Deep

Bayesian Uncertainty for Exponential Family

Distribution

Shin Yun Seop

January 02, 2024

Seoul national university, statistics, IDEA LAB



Uncertainty

• Aleatoric uncertainty: data uncertainty, irreducible

uncertainty.(cannot be reduced even if additional data is

input, etc measurement error)

• Epistemic uncertainty: model uncertainty, reducible

uncertainty. (if additional data is input then it can be reduced)
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Uncertainty

Figure 1: Type of uncertainty
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Related Work

• Sampling-based methods: For example, ensemble, dropout

based on bayesian neural network. ⇒ Computation issue

• Sampling-free methods: They model uncertainty at the weight

and/or activation levels ⇒ Constrained to specific architecture
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Natural Posterior Network

• It applies to many common supervised learning task type.

(Classification, Regression, Count prediction)

• For every input, it predicts the parameters of the posterior

over the target exponential family distribution.

• It requires only a single forward pass at testing time.

Flexible, Reliable, Fast & Practical
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Bayes rule

Theorem

Bayes rule:

Q(θ|D) ∝ P(D|θ)Q(θ)

where, P(D|θ) is the target distribution of the target data D
given its parameter θ, and Q(θ) and Q(θ|D) are the prior and

posterior distributions, respectively, over the target distribution

parameters.
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Exponential family

• Exponential family cover a wide range of target variables like

discrete, continuous, counts or spherical coordinates.

• Parameters, density functions and statistics of exponential

family can often be evaluated in closed-form.
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Exponential family

Definition

Formally, an exponential family distribution on a target variable

y ∈ R with natural parameters θ ∈ RL can be denoted as

P(y |θ) = h(y)exp(θTu(y)− A(θ))

where h : R → R is base measure, A : RL → R and u : R → RL

the sufficient stastistics.
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Exponential family

Theorem

An exponential family distribution always admits a conjugate

prior, which often also is a member of the exponential family

Q(θ | χ, n) = η(χ, n) exp
(
nθTχ− nA(θ)

)
where η(χ, n) is a normalization coefficient, χ ∈ RL are prior

parameters and n ∈ R+ is the evidence.
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Exponential family(Continue)

Theorem

Given a set of N target observations
{
y (i)

}N

i
, it is easy to

compute a closed-form Bayesian update,

Q
(
θ | χpost, npost

)
∝ exp

(
npost θTχpost − npost A(θ)

)
where χpost =

nprior χprior +
∑N

j u(y (j))
nprior +N

and npost = nprior + N.

Also we can show that χ = EY (u(Y )).

(Brown, 1986; Diaconis & Ylvisaker, 1979)
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Posterior parameter update

• NatPN extends the Bayesian treatment of a single exponential

family distribution prediction by predicting an individual

posterior update per input.

• Distinguish between the chosen prior parameters χprior , nprior

shared among sample, and the additional predicted parameter

χ(i), n(i) dependent on the input x (i) leading to the updated

posterior parameters.

• The updated posterior parameters per one input are followed:

χpost ,(i) =
nprior χprior + n(i)χ(i)

nprior + n(i)
, npost ,(i) = nprior + n(i)
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Model setting

• An arbitrary encoder fϕ maps the input x (i) onto a

low-dimensional latent vector z(i) = fϕ(x
(i)) ∈ RH .

• A linear decoder gψ is trained to output the parameter update

χ(i) = gψ(z
(i)) ∈ RL.

• A single normalized density(typically, radial flow or masked

auto regressive flow are used) is trained to output the

evidence update n(i) = NHP(z(i)|ω).
• NH is hyper parameter depending on H. On paper authors

recommend
{
e

1
2
H , eH , e log(

√
4π)H

}
.

• So, to train the model need to optimize ϕ, ψ, ω.
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Optimization

• Minimizing the Bayesian loss function.

L(i) = −Eθ(i)∼Qpost ,(i)

[
logP

(
y (i) | θ(i)

)]
︸ ︷︷ ︸

(i)

−H
[
Qpost ,(i)

]
︸ ︷︷ ︸

(ii)

where H
[
Qpost ,(i)

]
denotes the entropy of the predicted

posterior distribution Qpost ,(i).

• This loss is guaranteed to be optimal when the predicted

posterior distribution is close to the true posterior distribution

Q∗ (θ | x (i)
)
i.e. Qpost, ,(i) ≈ Q∗ (θ | x (i)

)
.
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Optimization(Continue)

• The term (i) is the expected likelihood under the predicted

posterior distribution.

• The term (ii) is an entropy regularizer acting as a prior which

favors uninformative distributions H
[
Qpost ,(i)

]
with high

entropy.

• In our case, we assume the likelihood P
(
y (i) | θ(i)

)
and the

posterior Qpost ,(i) to be member of the exponential family so

we can calculate it in closed form.
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Optimization(Continue)

Figure 2: Examples of Exponential Family Distributions where

ψ(x) and B(x) denote Digamma and Beta function, respectively.
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Uncertainty estimation

• Aleatoric uncertainty: The entropy of the target distribution

P(y |θ) was used to estimate the aleatoric uncertainty. i.e.

H [P(y |θ)]
• Epistemic uncertainty: The entropy of the posterior

distribution Q
(
θ | χpost, npost

)
was used to estimate the

epistemic uncertainty.
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Overview

Figure 3: The right figure show epistemic uncertainty estimation. Third

observation is highly uncertain.
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Limitation

• NatPN is capable of detecting OOD samples only with respect

to the considered task and requires labeled examples during

training.

• This is because NatPN does not perform OOD detection

directly on the input but rather fits a normalizing flow on a

learned space.

• For example, NatPN likely fails to detect a change of image

color if the task aims at classifying object shapes and the

latent space has no notion of color.

17



Reference

1. Charpentier, Bertrand, Oliver Borchert, Daniel Zügner, Simon
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