RNN & LSTM

Sung Eun Lee September 06, 2024

Seoul National University

2 Recurrent Neural Networks(RNNs)

Introduction

Sequence Data : Data in which elements are arranged sequentially in a specific order.

- Text : Sequence of words.
- Image : Sequence of Image.

Suitable for text data analysis :

- 1. Facilitates the extraction of relational information between words.
- 2. Facilitates the extraction of contextual meaning of words.

it is well-suited for extracting the information contained in text.

Recurrent Neural Networks(RNNs)

RNNs

Notation

- x_t : Input Vector at time step t.
- h_t : Hidden State Vector at time step t.

Figure1 : Recurrent Neural Networks Structure.

RNNs

Figure2 : RNN Layer (Detailed).

► The weight matrices such as W_x and W_h are all shared, and this is referred to as Weight Sharing.

$$\blacktriangleright h_{\mathsf{next}} = \tanh\left(W_x \cdot x + W_h \cdot h_{\mathsf{prev}} + b\right)$$

RNNs

Figure3 : Back Propagation Through Time(BPTT).

- ► The Vanishing Gradient problem occurs during the BPTT process.
- ▶ The vanishing gradient problem leads to issues with long-term dependencies.

Long Short-Term Memory(LSTM)

Notation

- C_t : Memory cell at time step t
- $\sigma(\cdot)$: sigmoid function
- \odot : Hadamard Product
- W^g_x, W^g_h : Weight Matrix, $g \in \{f, I_1, I_2, o, n\}$
 - f : forget gate ,
 - I_k : k-th Weight Matrix of the input gate , k = 1,2
 - o : output gate,
 - n : new input.

Figure4 : LSTM Structure.

► The key difference from RNNs is the introduction of Memory Cells and the concept of gates.

Figure5 : Forget gate structure

Forget Gate determines how much of the information from the previous time step should be forgotten.

$$\blacktriangleright f_t = \sigma(x_t \cdot W_x^f + h_{t-1} \cdot W_h^f + b^f).$$

Figure6 : Input gate structure

Input Gate is a gate responsible for adding the information from the current word x_t .

$$\bullet i_t = \sigma(x_t \cdot W_x^i + h_{t-1} \cdot W_h^i + b^i)$$
$$\bullet \tilde{C}_t = \tanh(x_t \cdot W_x^n + h_{t-1} \cdot W_h^n + b^n)$$

Update

This process updates the previous Cell State C_{t-1} to the new State C_t .

Formulas

 $\blacktriangleright C_t = f_t \odot C_{t-1} + i_t \odot \tilde{C}$

Figure8 : Output gate structure

In the Ouput Gate, the newly updated C_t is used along with the Input Vector x_t and the hidden state vector from the previous time step h_{t-1} to caculate the hidden state h_t for the current time step t.

- $\blacktriangleright o_t = \sigma(x_t \cdot W_x^o + h_{t-1} \cdot W_h^o + b^o)$
- $\blacktriangleright h_t = o_t \odot \tanh(C_t)$

Q & **A**