
A Critical Review of Recurrent Neural Networks
for Sequence Learning

Sung Eun Lee

August 01, 2024

Seoul National University



Contents

1 Introduction

2 RNN

3 Summary



Introduction



Notation

• x(t): Input vector at time step t.

• h(t): Hidden state vector at time step t.

• ŷ(t): Output vector at time step t.

• Whx: Weight matrix between the input layer and the hidden layer.

• Whh: Weight matrix for the hidden layer, connecting it to itself at adjacent
time steps.

• W yh: Weight matrix between the hidden layer and the output layer.

• bh: Bias vector for the hidden layer.

• by: Bias vector for the output layer.



Feedforward Neural Network and Backpropagation

(a) Feedforward Neural Network. (b) Backpropagation

Figure 1: Feedforward Neural Network and Backpropagation

▶ Learning is accomplished by iteratively updating each of the weights to minimize

a loss funton L(ŷ, y), which penalizes the distance between the output ŷ and

the target y.

▶ Backpropagation uses the chain rule to calculate the derivative of the loss

function L with respect to each parameter in the network.



Why Use RNNs?

▶ Many learning tasks require dealing with sequential data.

e.g. Image Captioning, Time Series prediction, Video Analysis.

Challenge
▶ Standard Neural Networks have limitations.

They often assume independence among the training and test samples.

Soultion
▶ RNNs have a recurrent structure that allows them to remember information

from previous time steps and use it as input.

▶ RNNs are connectionist models that capture the dynamics of sequences via cylces

in the network of nodes.



RNN



Recurrent Neural Network

(a) (b)

Figure 2: Simple Recurrent Network

▶ Recurrent Neural Networks are feedforward neural networks augmented by the

inclusion of edges that span adjacent time stpes, introducing a notion of time

to time model.

▶ It is then clear that the unfolded network can be trained across many time steps

using backpropagation. This algorithm, called backpropagation through time

(BPTT).



Recurrent Neural Network

x(t) h(t) ŷ(t)

h(t−1)

Whx W yh

Whh

Figure 3: Detailed Structure of a Simple Recurrent Network.

▶ h(t) = f(Whxx(t) +Whhh(t−1) + bh)

ŷ(t) = g(W yhh(t) + by), where f and g are activation functions.

▶ A distinctive feature of the RNN architecture is the sharing of weights

across time steps.



Challenge

Figure 4: A Visualization of the long-term dependency problem.

▶ In RNNs, vanishing and exploding gradients occur when the recurrent weight

is less than or greater than 1, respectively

▶ Exploding Gradients
The value of the loss function can become extremely large. This can cause the

optimization algorithm to diverge, leading to instability in the learning process.

▶ Vanishing Gradients
Information from earlier time stpes may not be effectively passed to the present

of future, leading to long-term dependency problems.



Solution

Note
▶ According to [Bengio et al.(1994)], it is difficult to address the long-term

dependency problem in RNNs.

Exploding Gradients

▶ Truncated Backpropagation Through Time(TBPTT) calculates the gradients

by performing backpropagation only over a fixed segment of time steps from

the past.

▶ Gradient Clipping is a method that limits the magnitude of the gradient to a

specific threshold.

Vanishing Gradients

▶ Long short-term memory(LSTM) is a special structure of RNNs capable of

learning long-term dependencies.



Summary



Summary

1. The RNN structure is suitable for sequence data and time series data.

2. RNNs encounter issues with long-term dependencies.

3. LSTM was introduced in 1997 to address the long-term dependency problem
caused by gradient vanishing in RNNs.


	Introduction
	RNN
	Summary

