A Critical Review of Recurrent Neural Networks for Sequence Learning

Sung Eun Lee August 01, 2024

Seoul National University

Introduction

Notation

- $x^{(t)}$: Input vector at time step t.
- $h^{(t)}$: Hidden state vector at time step t.
- $\hat{y}^{(t)}$: Output vector at time step t.
- W^{hx} : Weight matrix between the input layer and the hidden layer.
- W^{hh} : Weight matrix for the hidden layer, connecting it to itself at adjacent time steps.
- W^{yh} : Weight matrix between the hidden layer and the output layer.
- b_h : Bias vector for the hidden layer.
- b_y : Bias vector for the output layer.

Feedforward Neural Network and Backpropagation

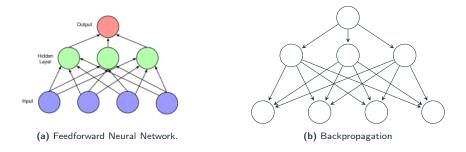


Figure 1: Feedforward Neural Network and Backpropagation

- ▶ Learning is accomplished by iteratively updating each of the weights to minimize a loss funton $\mathcal{L}(\hat{y}, y)$, which penalizes the distance between the output \hat{y} and the target y.
- ► Backpropagation uses the chain rule to calculate the derivative of the loss function *L* with respect to each parameter in the network.

Many learning tasks require dealing with sequential data.
e.g. Image Captioning, Time Series prediction, Video Analysis.

Challenge

► Standard Neural Networks have limitations.

They often assume independence among the training and test samples.

Soultion

- RNNs have a recurrent structure that allows them to remember information from previous time steps and use it as input.
- RNNs are connectionist models that capture the dynamics of sequences via cylces in the network of nodes.

RNN

Recurrent Neural Network

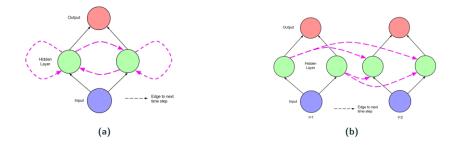


Figure 2: Simple Recurrent Network

- Recurrent Neural Networks are feedforward neural networks augmented by the inclusion of edges that span adjacent time stpes, introducing a notion of time to time model.
- It is then clear that the unfolded network can be trained across many time steps using backpropagation. This algorithm, called backpropagation through time (BPTT).

Recurrent Neural Network

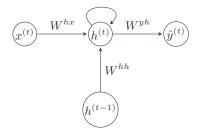


Figure 3: Detailed Structure of a Simple Recurrent Network.

- ► $h^{(t)} = f(W^{hx}x^{(t)} + W^{hh}h^{(t-1)} + b_h)$ $\hat{y}^{(t)} = g(W^{yh}h^{(t)} + b_y)$, where f and g are activation functions.
- ► A distinctive feature of the RNN architecture is the sharing of weights across time steps.

Challenge

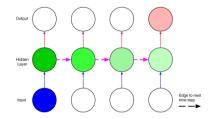


Figure 4: A Visualization of the long-term dependency problem.

► In RNNs, vanishing and exploding gradients occur when the recurrent weight is less than or greater than 1, respectively

Exploding Gradients

The value of the loss function can become extremely large. This can cause the optimization algorithm to diverge, leading to instability in the learning process.

► Vanishing Gradients

Information from earlier time stpes may not be effectively passed to the present of future, leading to long-term dependency problems.

Solution

Note

► According to [Bengio et al.(1994)], it is difficult to address the long-term dependency problem in RNNs.

Exploding Gradients

- Truncated Backpropagation Through Time(TBPTT) calculates the gradients by performing backpropagation only over a fixed segment of time steps from the past.
- Gradient Clipping is a method that limits the magnitude of the gradient to a specific threshold.

Vanishing Gradients

 Long short-term memory(LSTM) is a special structure of RNNs capable of learning long-term dependencies.

Summary

- 1. The RNN structure is suitable for sequence data and time series data.
- 2. RNNs encounter issues with long-term dependencies.
- 3. LSTM was introduced in 1997 to address the long-term dependency problem caused by gradient vanishing in RNNs.