ProtoVAE

January 24, 2024

Reviewr : Park Seok Hun

2 Model

2 Model

3 Visualization

- They proposed the three properties that are prerequisites for SEM.
- Properties : transparent, diverse , trustworthy

- An SEM is transparent if
 - its concepts are utilized to perform the downstream task without leveraging a complex black box model
 - 2 its concepts are visualizable in input space.

Diverse and trustworthy

- An SEM is diverse if
 - **1** its concepts represent non-overlapping information in the latent space.
- An SEM is trustworthy if
 - its performance matches to that of the closet black-box counterpart.
 - 2 the explanations are robust.
 - the explanations represent the real contribution of the input features to the prediction.

Model

- Let Φ = {φ_{kj}}_{k=1,...,K,j=1,...,M} be prototypes parameters where K is the number of class and M is the number of prototypes per class.
- $z_i = f(x_i)$ be the latent vector for input x_i where f is the encoder.
- Using the following function to calculate the similarity between z_i and the parameters of the prototypes.

$$s_i(k,j) = sim(z,\phi_{kj}) = \log\left(\frac{\|z_i - \phi_{kj}\|^2 + 1}{\|z_i - \phi_{kj}\|^2 + \epsilon}\right)$$
(1)

where $0 < \epsilon < 1$.

• $\hat{y}_i = h(s_i)$ where $s_i = (s_i(k, j), k, j)'$ and h is linear classifier.

- $Loss = L_{pred} + L_{orth} + L_{VAE}$
- $L_{pred} = \frac{1}{n} \sum_{i=1}^{N} CE(h(s_i), y_i)$ where y_i is true label.
- $L_{orth} = \sum_{k=1}^{K} \|\Phi_k^t \Phi_k I_M\|_F^2$ where $\Phi_k = (\phi_{kj}, j = 1, .., M)'$
- Lorth forces the prototypes of vae to be diverse in the class.

2 Model

• The prototypes parameter can decoded via decoder of VAE.

2 Model

Table 2: Performance results of ProtoVAE compared to other state-of-the-art methods (measured in accuracy (in %)). The reported numbers are means and standard deviations over 4 runs. Best and statistically non-significantly different results are marked in bold. *Results for SITE are taken from the original paper and thus based on more complex architectures.

	Black-box encoder	FLINT [13]	SENN [8]	*SITE [17]	ProtoPNet [9]	ProtoVAE
MNIST	99.2±0.1	99.4±0.1	98.8±0.7	98.8	94.7±0.6	99.4±0.1
fMNIST	91.5±0.2	91.5 ± 0.2	88.3 ± 0.3	-	$85.4{\pm}0.6$	91.9±0.2
CIFAR-10	83.9 ± 0.1	79.6 ± 0.6	76.3 ± 0.2	84.0	$67.8 {\pm} 0.9$	$84.6 {\pm} 0.1$
QuickDraw	86.7 ± 0.4	82.6 ± 1.4	79.3 ± 0.3	-	58.7 ± 0.0	87.5±0.1
SVHN	92.3±0.3	$90.8{\pm}0.4$	$91.5{\pm}0.4$	-	$88.6 {\pm} 0.3$	92.2±0.3